The First Example of Dicubane Nickel(II) Complex in the Series of Unsymmetrically Substituted Diketones

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The first homometal dicubane nickel(II) complex based on unsymmetrically substituted 1,3-diketone (1,1,1-trifluoro-4-(2-methoxyphenyl)butan-2,4-dione) was synthesized and studied by X-ray diffraction using synchrotron radiation (CCDC no. 861889). In the crystal of the complex, nickel atoms are joined into tetrahedra sharing a common vertex with Ni…Ni distances of 3.026–3.127 A; the geometry is completed to a distorted dicubane by μ3-bridging oxygen atoms of the hydroxyl groups. The coordination environment of each metal center is a distorted octahedron, the ligand is deprotonated and performs a bidentate function, forming six-membered chelate rings.

Full Text

Restricted Access

About the authors

L. A. Khamidullina

Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences; Ural Federal University named after the First President of Russia B.N. Yeltsin

Email: puzyrev@ios.uran.ru
Russian Federation, Yekaterinburg; Yekaterinburg

I. S. Puzyrev

Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: puzyrev@ios.uran.ru
Russian Federation, Yekaterinburg

P. V. Dorovatovsky

Kurchatov Institute

Email: puzyrev@ios.uran.ru
Russian Federation, Moscow

V. N. Khrustalev

Peoples' Friendship University of Russia; Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: puzyrev@ios.uran.ru
Russian Federation, Moscow; Moscow

A. V. Pestov

Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences; Ural Federal University named after the First President of Russia B.N. Yeltsin

Email: puzyrev@ios.uran.ru
Russian Federation, Yekaterinburg; Yekaterinburg

References

  1. Shiga T., Newton G.N., Oshio H. // Dalton Trans. 2018. V. 47, № 22. P. 7384.
  2. Kirillov A.M., Kirillova M. V., Pombeiro A.J.L. // Coord. Chem. Rev. 2012. V. 256. № 23–24. P. 2741.
  3. Ungur L., Lin S.Y., Tang J. et al. // Chem. Soc. Rev. 2014. V. 43. № 20. P. 6894.
  4. Nesterov D.S., Nesterova O. V., Pombeiro A.J.L. // Coord. Chem. Rev. 2018. V. 355. P. 199.
  5. Wang K., Gao E. // Anticancer Agents Med. Chem. 2014. V. 14. № 1. P. 147.
  6. Muetterties E.L., Rhodin T.N., Band E. et al. // Chem. Rev. 1979. V. 79. № 2. P. 91.
  7. Zhao Q., Harris T.D., Betley T.A. // J. Am. Chem. Soc. 2011. V. 133. № 21. P. 8293.
  8. Sanz S., O´Connor H.M., Martí-Centelles V. et al. // Chem. Sci. 2017. V. 8. № 8. P. 5526.
  9. Horiuchi S., Tachibana Y., Yamashita M. et al. // Nat. Commun. 2015. V. 6. Art. 6742.
  10. Zaleski C.M., Tricard S., Depperman E.C., et al. // Inorg. Chem. 2011. V. 50. № 22. P. 11348.
  11. Engelhardt L.P., Muryn C.A., Pritchard R.G. et al. // Angew. Chem. Int. Ed. 2008. V. 47. № 5. P. 924.
  12. Schäfer B., Greisch J.F., Faus I. et al. // Angew. Chem.Int. Ed. 2016. V. 55. № 36. P. 10881.
  13. Shvachko Y.N., Starichenko D. V., Korolev A. V. et al. // Inorg. Chim. Acta. 2018. V. 483. P. 480.
  14. Murrie M., Stoeckli-Evans H., Güdel H.U. // Angew. Chem.. Int. Ed. 2001. V. 40, № 10. P. 1957.
  15. Aromí G., Parsons S., Wernsdorfer W. et al. // Chem. Commun. 2005. № 40. P. 5038.
  16. Keene T.D., Hursthouse M.B., Price D.J. // New. J. Chem. 2004. V. 32. № 9. P. 1.
  17. Petit S., Neugebauer P., Pilet G. et al. // Inorg. Chem. 2012. V. 51. № 12. P. 6645.
  18. Dong W.K., Zhu L.C., Dong Y.J. et al. // Polyhedron. 2016. V. 117. P. 148.
  19. Mameri S. // Inorg, Chim. Acta. 2017. V. 455. P. 231.
  20. Kuznetsova O. V., Fursova E.Y., Letyagin G.A. et al. // Russ. Chem. Bull. 2018. V. 67, № 7. P. 1202.
  21. Hameury S., Kayser L., Pattacini R. et al. // ChemPlusChem. 2015. V. 80 № 8. P. 1312.
  22. Khamidullina L.A., Puzyrev I.S., Glukhareva T. V. et al. // J. Mol. Struct. 2019. V. 1176. P. 515.
  23. Battye T.G.G., Kontogiannis L., Johnson O. et al. // Acta Crystallogr. D. 2011. V. 67, № 4. P. 271.
  24. Evans P. // Acta Crystallogr. D. 2006. V. 62. № 1. P. 72.
  25. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1

Download (179KB)
3. Fig. 1. Molecular structure of complex I in thermal ellipsoids of 30% probability. Hydrogen atoms and the solvated water molecule are not depicted. For disordered groups only the major components are given

Download (403KB)
4. Fig. 2. Structure of the inorganic core and coordination polyhedron of complex I according to PCA data

Download (331KB)
5. Fig. 3. Coordination environment of the peripheral metal centre in complex I according to PCA data

Download (149KB)
6. Fig. 1

Download (9KB)
7. Fig. 2

Download (9KB)
8. Fig. 3

Download (15KB)
9. Fig. 4. FT-IR spectrum of complex I

Download (89KB)

Copyright (c) 2024 Российская академия наук