Mechanism of effect of the zinc and lead ions on state of the oxidation processes in liposomes from lecithin

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The influence of divalent zinc and lead ions in a wide range of concentrations on the ability of soy lecithin to spontaneous aggregation in water medium, the zeta potential of he formed liposomes, the ability of metal ions to interact with membranes and their participation in the processes of the lipid peroxidation were studied using the method of dynamic light scattering and mathematical processing of UV-spectra of lecithin and its mixtures with metal ions. It has been shown that the scale and direction of the impact of zinc and lead ions corresponds to their biological activity when entering the body. The data obtained and the analysis of the literature allow us to conclude that the effect of zinc ions at high concentrations on the structural state of membranes and their electrophoretic properties and a significant change in the parameters of the lipid peroxidation regulation system in biological objects in the presence of lead ions, even at low doses, are the basis of their toxicity for biological objects.

Texto integral

Acesso é fechado

Sobre autores

A. Mashukova

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: shishkina@sky.chph.ras.ru
Rússia, Moscow

A. Dubovik

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences; Nesmeyanov Institute of Organoelement compounds, Russian Academy of Sciences

Email: shishkina@sky.chph.ras.ru
Rússia, Moscow; Moscow

V. Shvydkiy

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: shishkina@sky.chph.ras.ru
Rússia, Moscow

L. Shishkina

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: shishkina@sky.chph.ras.ru
Rússia, Moscow

Bibliografia

  1. V.F. Gromov, M.I. Ikim, G.N. Gerasimov, L.I. Trakhtenberg. Russ. J. Phys. Chem. B. 16, 138 (2022). https://doi.org/10.1134/S1990793122010055
  2. E.V. Stamm, Yu.I. Skurlatov, V.O Shvydkiy et al. Russ. J. Phys. Chem. B. 9, 421 (2015). https://doi.org/10.1134/S1990793115030197
  3. Yu.I. Skurlatov, E.V. Vichutinskaya, N.I. Zaitseva et al. Russ. J. Phys. Chem. B. 9, 412 (2015). https://doi.org/10.1134/S1990793115030203
  4. E.V. Stamm, Yu.I. Skurlatov, A.V. Roshchin et al. Russ. J. Phys. Chem. B. 13, 986 (2019). https://doi.org/ 10.1134/S1990793119060095
  5. V.O. Shvydkiy, E.V. Stamm, Yu.I. Skurlatov et al. Russ. J. Phys. Chem. B. 11, 643 (2017). https://doi.org/10.1134/S1990793117040248
  6. L.N. Shishkina, M.V. Kozlov, A.Yu. Povkh, V.O. Shvydkiy. Russ. J. Phys. Chem. B. 15, 861 (2021). https://doi.org/ 10.1134/S1990793121050080
  7. N.Yu. Gerasimov, O.V. Nevrova, I.V. Zhigacheva et al. Russ. J. Phys. Chem. B. 17, 135 (2023). https://doi.org/10.1134/s1990793123010049
  8. L.N. Shishkina, L.I. Mazaletskaya, M.V. Kozlov et al. Russ. J. Phys. Chem. B. 14, 498 (2020). https://doi.org/ 10.1134/S1990793120030240
  9. V. Shvydkyi, S. Dolgov, A. Dubovik et al. Chem. J. Moldova. Т. 17(2), 35 (2022). http://dx.doi.org/10.19261/cjm.2022.973
  10. L.N. Shishkina, M.V. Kozlov, T.V. Konstantinova et al. Russ. J. of Phys. Chem. B. 17, 141 (2023). https://doi.org/ 10.1134/s1990793123010104
  11. I.V. Kumpanenko, N.A. Ivanova, O.V. Shapovalova et al. Russ. J. of Phys. Chem. B. 16, 917 (2022). https://doi.org/10.1134/s1990793122050050
  12. A.W. Girotti, J.P. Thomas, J.E. Jordan. J. Free Rad. Biol. & Med. 1, 395 (1985). https://doi.org/10.1016/0748-5514(85)90152-7
  13. R. Sandhir, K.D. Gill. Biol. Trace elem. Res 48, 91 (1995). https://doi.org/10.1007/BF02789081
  14. Sh.O. Nuriddinova, A.V. Tsoi, A.S. Sultanbaeva, Kh.N. Akbarkhodzhaeva. ORIENS 3, 214 (2023).
  15. T.T. Vu, J.C. Fredenburgh, J.I. Weitz. Thromb.Haemost. 109, 421 (2013). https://doi.org/10.1160/TH12-07-0465
  16. M. Bundschuh, J. Filser, S. Lüderwald et al. Environ. Sci. Eur. 30, 1 (2018). https://doi.org/10.1186/s12302-018-0132-6
  17. A.V. Lobanova, Yu.S. Chasovskikh. Proc. Intern. conf. Week of russian science. Saratov: Razumovsky University, 2023, P. 1140.
  18. L.J. Lawton, W.E. Donaldson. Biol. Trace Elem. Res. 28, 83 (1991). https://doi.org/10.1007/BF02863075
  19. S. Kasperczyk, L. Słowińska-Łożyńska, A. Kasperczyk. Toxicol. Ind. Health 31, 1165 (2015). https://doi.org/10.1177/0748233713491804
  20. J.B.C. Findlay, W.H. Evans. Biological membranes: a practical approach, Ltd, Oxford, 1987.
  21. L.N. Shishkina, E.V. Kushnireva, M.A. Smotryaeva. Radiation biology. Radioecology, 44, 289 (2004).
  22. K.M. Marakulina, R.V. Kramor, Yu.K. Lukanina et al. Russ. J. Phys. Chem. A 90, 286 (2016). https://doi.org/10.1134/S0036024416020187
  23. E.F. Brin, S.O. Travin. J. Chem. Phys. B. 10, 830 (1991).
  24. R. Gennis, Biomembranes: Molecular structure and function. (Springer, New York, 1989).
  25. L.N. Shishkina, M.A. Klimovich, M.V. Kozlov. Pharmaceutical and Medical Biotechn. New Persp, (Nova Science Publishers, New York, 2013).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Dependence of the ζ-potential values ​​of lecithin liposomes ([Lecithin] = 4.3 10–5 M) on the concentration of lead ions (1, lecithin batch No. 2; 2, lecithin batch No. 1) and zinc ions (3, lecithin batch No. 1).

Baixar (62KB)
3. Fig. 2. Ultraviolet spectrum of lecithin in the presence of zinc ions and its Gaussians: 1 and 2 – initial and calculated spectra, 3 – 196.4 nm, 4 – 231.0 nm, 5 – 265.8 nm, 6 – 343.6 nm, 7 – 407.7 nm; [Lecithin] = 4.3 10–5 M, [Zn]2+ = 5 10–5 M.

Baixar (57KB)
4. Fig. 3. Ultraviolet spectrum of lecithin in the presence of lead ions and its Gaussians: 1 and 2 – initial and calculated spectra, 3 – 198.7 nm, 4 – 209.6 nm, 5 – 232.4 nm, 6 – 260.8 nm, 7 – 352.6 nm; [Lecithin] = 4.3 10–5 M, [Pb]2+ = 5 10–5 M.

Baixar (53KB)
5. Fig. 4. The ratio of the content of ketodienes (KD) and diene conjugates (DC) in liposome lipids depending on the concentration of zinc (1) and lead (2) ions in the solution.

Baixar (58KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025