Quantum chemical simulation of reactions in a nanogold–oxygen–hydrogen system

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Quantum chemical calculations are performed to determine the heats of adsorption of H2 and O2 on the simplest electrically neutral Au3 cluster or the negatively charged Au3- cluster. A detailed mechanism is proposed for reaction between O2 and (Au3H2) adsorbate, and the energy budget for the elementary reactions producing (Au3O)- and H2O is calculated. The energy budget is also calculated for the elementary steps involved in the reaction between (Au3O)- and H2 producing Au3- and H2O. Based on the calculated results, an explanation is proposed for the experimental data on interaction of hydrogen and oxygen with gold nanoparticles deposited on pyrolytic graphite. Since the gold nanoparticles located on graphite are negatively charged, the calculations are performed accordingly for negatively charged gold-containing particles.

Texto integral

Acesso é fechado

Sobre autores

M. Grishin

Semenov Research Center for Chemical Physics, Russian Academy of Sciences

Email: slutsky@chph.ras.ru
Rússia, Moscow, 119991

D. Baimukhambetova

Semenov Research Center for Chemical Physics, Russian Academy of Sciences

Email: slutsky@chph.ras.ru
Rússia, Moscow, 119991

A. Gatin

Semenov Research Center for Chemical Physics, Russian Academy of Sciences

Email: slutsky@chph.ras.ru
Rússia, Moscow, 119991

S. Sarvadii

Semenov Research Center for Chemical Physics, Russian Academy of Sciences

Email: slutsky@chph.ras.ru
Rússia, Moscow, 119991

V. Slutskii

Semenov Research Center for Chemical Physics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: slutsky@chph.ras.ru
Rússia, Moscow, 119991

V. Kharitonov

Semenov Research Center for Chemical Physics, Russian Academy of Sciences

Email: slutsky@chph.ras.ru
Rússia, Moscow, 119991

Bibliografia

  1. Wittstock, V. Zielasek, J. Biener, C.M. Friend, M. Baumer. Science. 327, 319(2010). https://doi.org/10.1126/science.1183591
  2. Raptis, H. Garcia, M. Stratakis. Angew. Chem. Int. Ed. 48, 3133(2009). https://doi.org/10.1002/anie.200805838
  3. S.F.R. Taylor, J. Sa, C. Hardacre C. ChemCatChem. 3 119 (2011). https://doi.org/10.1002/cctc.201000337
  4. Y. Zhu, L. Tian, Z. Jiang, S. Pei, S. Xie, M. Qiao, K. Fan. J. Catal. 281, 106(2011). https://doi.org/10.1016/j.jcat.2011.04.007
  5. Corma, P. Serna. Science. 313, 332(2006). https://doi.org/10.1126/science.1128383
  6. A.K. Gatin, M.V. Grishin, N.V. Dokhlikova, A.A. Kirsankin, N.N. Kolchenko, V.A. Kharitonov, B.R. Shub, S.A. Gurevich, V.M. Kozhevin, D.A. Yavsin, T.N. Rostovshchikova. Russian Chemical Bulletin. 63(8) 1696(2014). https://doi.org/10.1007/s11172-014-0655-y
  7. V.M. Kozhevin, D.A. Yavsin, V.M. Kouznetsov, V.M. Busov, V.M. Mikushkin, S.Yu. Nikonov, S.A. Gurevich, A. Kolobov. J. Vac. Sci. Techn. B. 18, 1402(2000). https://doi.org/10.1116/1.591393
  8. M.V. Grishin, A. K.Gatin, V.G. Slutskii, A.S. Fedotov, V.A. Kharitonov, B.R Shub. Russian Journal of Physical Chemistry B. 16(3), 395(2022). https://doi.org/10.1134/s1990793122030150
  9. M.V. Grishin, A. K.Gatin, V.G. Slutskii, A.S. Fedotov, V.A. Kharitonov, B.R Shub. Russian Journal of Physical Chemistry B. 17(1), 49(2023). https://doi.org/10.1134/s1990793123010050
  10. M.V. Grishin, A.K. Gatin, V.A. Kharitonov, S.A. Ozerin, S.Yu. Sarvadii, B.R. Shub.// Russian Journal of Physical Chemistry B. 16(2), 211(2022). https://doi.org/10.1134/S199079312232001X
  11. N.V. Dokhlikova, A.K. Gatin, S.Yu. Sarvadiy, S.A. Ozerin, E.I. Rudenko, M.V. Grishin, B.R. Shub. Russian Journal of Physical Chemistry B. 16(4), 722(2022). https://doi.org/10.1134/s1990793122040042
  12. T. Ozaki. Phys. Rev. B. 67, 155108(2003). https://doi.org/10.1103/PhysRevB.67.155108
  13. T. Ozaki, H. Kino. Phys. Rev. B. 69, 195113(2004). https://doi.org/10.1103/PhysRevB.69.195113
  14. L.N. Rosanov. Vakuumnaya Tehnika, 2-nd Edition. Moscow, Vysshaya Shkola, 1990. 220 P. [in Russian].

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Structures of Au3 and Au3-, as well as the structures of electroneutral and negatively charged adsorbates Au3H2 and (Au3H2)- isomers. Gray labels are Au, black labels are H. Distances are in Å. The heats of adsorption in kcal/mol are given in square brackets.

Baixar (68KB)
3. Fig. 2. Structures of the electroneutral and negatively charged adsorbate isomers Au3O2 and (Au3O2)-. Gray labels are Au, white labels are O. Distances are in Å. The heats of adsorption in kcal/mol are given in square brackets.

Baixar (117KB)
4. Fig. 3. Mechanism of interaction of stable negatively charged adsorbate (H-Au3-H)- with two O2 molecules. Gray labels are Au, white labels are O, and black labels are H. Distances are in Å. The heats of elementary reactions in kcal/mol are given in square brackets.

Baixar (124KB)
5. Fig. 4. Mechanism of interaction of negatively charged oxide (Au3O)- with H2 molecule. Gray labels are Au, white labels are O, and black labels are H. Distances are in Å. The heats of elementary reactions in kcal/mol are given in square brackets.

Baixar (119KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025