Photogeneration of charge carriers in organic solar cells. The role of nonequilibrium states for electrons and holes

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The aim of this study is to consider a photogeneration of charge carriers in nano-structured blends of the donor (D) and acceptor (A) materials. Upon optical excitation photons absorbed in one of these materials produce intramolecular excitons which can diffuse to the D–A interface and form at the interface the interfacial CT states. The interfacial CT state dissociates into a geminate pair of the non-equilibrium mobile electron and hole. In the present study, an empirical model describing thermalization of the non-equilibrium charges within the Coulomb well is proposed. Efficiency of the interfacial CT state dissociation into a pair of free charges is found as a function of the electric field applied, effective temperature and diffusion length of non-equilibrium electron-hole pairs.

Толық мәтін

Рұқсат жабық

Авторлар туралы

L. Lukin

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: leonid.v.lukin@gmail.com
Ресей, Moscow

Әдебиет тізімі

  1. J.-L. Brédas, J.E. Norton, J. Cornil, V. Coropceany. Acc. Chem. Res. 42, 1691 (2009). https://doi.org/10.1021/ar900099h
  2. T.M. Clarke, J.R. Durrant. Chem. Rev. 110, 6736 (2010). https://doi.org/10.1021/cr900271s
  3. A.Yu. Sosorev, D.Yu. Godovsky, D.Yu. Paraschuk. Phys. Chem. Chem. Phys. 20, 3658 (2018). https://doi.org/10.1039/c7cp06158g
  4. L.V. Lukin. Russian J. Phys. Chem. B: Focus on Physics, 17, 1300 (2023). https://doi.org/10.1134/S1990793123060180
  5. K. Vandewal. Annu. Rev. Phys. Chem. 67, 113 (2016). https://doi.org/10.1146/annurev-physchem-040215- 112144
  6. A.E. Jailaubekov, A.P. Willard, J.R. Tritsch, W.-L. Chan et al. Nature Mater. 12, 66 (2013). https://doi.org/10.1038/NMAT3500
  7. K. Chen, A.J. Barker, M.E. Reish, K.C. Gordon, J.M. Hodgkiss. J. Am. Chem. Soc. 135, 18502 (2013). https://doi.org/10.1021/ja408235h
  8. G. Grancini, M. Maiuri, D. Fazzi, A. Petrozza, H.-J. Egelhaaf et al. Nature Mater. 12, 29 (2013). https://doi.org/10.1038/NMAT3502
  9. A.A. Bakulin, A. Rao, V.G. Pavelyev, P.H.M. van Loosdrecht, M.S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne, R.H. Friend. Science, 335, 1340 (2012).
  10. H. Ohkita, S. Cook, Y. Astuti, W. Duffy, S. Tierney, W. Zhang, M. Heeney, L. Mcculloch, J. Nelson, D.D.C. Bradley, J.R. Durrant, J. Am. Chem. Soc. 130, 3030 (2008).
  11. S. Gélinas, A. Rao, A. Kumar, S.L. Smith, A.W. Chin, J. Clark, T.S.van der Poll, G.C. Bazan, R.H. Friend. Science, 343, 512 (2014).
  12. A.C. Jakowetz, M.L. Böhm, J. Zhang, A. Sadhanala, S. Huettner, A.A. Bakulin, A. Rao, R.H. Friend. J. Am. Chem. Soc. 138, 11672 (2016). https://doi.org/10.1021/jacs.6b05131
  13. K. Vandewal, S. Albrecht, E.T. Hoke, K.R. Graham, J. Widmer et al. Nature Mater. 13, 63 (2014).
  14. J.D. Servaites, B.M. Savoie, J.B. Brink, T.J. Marks, M.A. Ratner. Energy Environ. Sci. 5, 8343 (2012).
  15. M. Hilczer, M. Tachiya. J. Phys. Chem. C, 114, 6808 (2010).
  16. V.A. Trukhanov, V.V. Bruevich, D.Y. Paraschuk. Phys. Rev. B: Condens. Matter Mater. Phys. 84, 205318 (2011).
  17. M. Wiemer, A.V. Nenashev, F. Jansson, S.D. Baranovskii. Appl. Phys. Lett. 99, 013302 (2011). https://doi.org/10.1063/1.3607481
  18. S.D. Baranovskii, M. Wiemer, A.V. Nenashev, F. Jansson, F. Gebhard. J. Phys. Chem. Lett. 3, 1214 (2012). https://doi.org/10.1021/jz300123k
  19. S. Tscheuschner, H. Bässler, K. Huber, A. Köhler. J. Phys. Chem. B, 119, 10359 (2015). https://doi.org/10.1021/acs.jpcb.5b05138
  20. L.V. Lukin. Chem. Phys. 551, 111327 (2021). https://doi.org/10.1016/j.chemphys.2021.111327
  21. A. Devižis, A. Serbenta, K. Meerholz, D. Hertel, V. Gulbinas. Phys. Rev. Lett. 103, 027404 (2009). https://doi.org/10.1103/PhysRevLett.103.027404
  22. D.A. Vithanage, A. Devižis, V. Abramavičius, Y. Infahsaeng, D. Abramavičius, R.C.I. MacKenzie, P.E. Keivanidis, A. Yartsev, D. Hertel, J. Nelson, V. Sundström, V. Gulbinas. Nature Commun. 4, 2334 (2013). https://doi.org/10.1038/ncomms3334
  23. A. Melianas, V. Pranculis, Y. Xia, N. Felekidis, V. Gulbinas, M. Kemerink. Adv. Energy Mater. 7, 1602143 (2017).
  24. S. Baranovski, O. Rubel, in: S. Baranovski (Ed.) Charge Transport in Disordered Solids with Application in Electronics, John Wiley & Sons, Chichester, 2006, Chapter 6. P. 221–266.
  25. L. Onsager. Phys. Rev. 54, 554 (1938).
  26. K. Seki, M. Wojcik. J. Phys. Chem. C, 121, 3632 (2017).
  27. K.M. Hong, J. Noolandi. J. Chem. Phys. 68, 5163 (1978).
  28. D. Mauzerall, S.G. Ballard. Annu. Rev. Phys. Chem. 33, 377 (1982).
  29. H.C.F. Martens, J.N. Huiberts, P.W.M. Blom. Appl. Phys. Letters. 77, 1852 (2000). https://doi.org/10.1063/1.1311599
  30. A. Kumar, P.K. Bhatnagar, P.C. Mathur, M. Husain, S. Sengupta, J. Kumar. J. Appl. Phys. 98, 024502 (2005). https://doi.org/10.1063/1.1968445
  31. K.M. Coakley, M.D. McGehee. Chem. Mater. 16, 4533 (2004). https://doi.org/10.1021/cm049654n
  32. R. Noriega, J. Rivnay, K. Vandewal, F.P.V. Koch, N. Stingelin, P. Smith, M.F. Toney, A. Salleo. Nature Mater. 12, 1038 (2013).
  33. A. Devižis, D. Hertel, K. Meerholz, V. Gulbinas, J.-E. Moser. Organic Electronics, 15, 3729 (2014).
  34. V.D. Mihailetchi, J.K.J. van Duren, P.W.M. Blom, J.C. Hummelen, R.A.J. Janssen, J.M. Kroon, M.T. Rispens, W.J.H. Verhees, M.M. Wienk. Advan. Funct. Mater. 13, 43 (2003).
  35. S. Kobayashi, T. Takenobu, S. Mori, A. Fujiwara, Y. Iwasa, Sci. Technol. Adv. Mater. 4, 371 (2003).
  36. J. Noolandi, K.M. Hong. J. Chem. Phys. 70, 3230 (1979).
  37. A.A. Bakulin, S.D. Dimitrov, A. Rao, P.C.Y. Chow, C.B. Nielsen, B.C. Schroeder, I. McCulloch, H.J. Bakker, J.R. Durrant, R.H. Friend. J. Phys. Chem. Lett. 4, 209 (2013). https://doi.org/10.1021/jz301883y
  38. A.A. Bakulin, C. Silva, E. Vella. J. Phys. Chem. Lett. 7, 250 (2016). https://doi.org/10.1021/acs.jpclett.5b01955
  39. Y. Dong, H. Cha, J. Zhang, E. Pastor, P.S. Tuladhar, I. McCulloch, J.R. Durrant, A.A. Bakulin. J. Chem. Phys. 150, 104704 (2019). https://doi.org/10.1063/1.5079285
  40. T. Hahn, J. Geiger, X. Blase, I. Duchemin, D. Niedzialek, S. Tscheuschner, D. Beljonne, H. Bässler, A. Köhler. Adv. Funct. Mater. 25, 1287 (2015). https://doi.org/10.1002/adfm.201403784
  41. G.V. Simbirtseva, N.P. Piven’, S.D. Babenko. Russ. J. Phys. Chem. B: Focus on Physics, 16, 323 (2022). https://doi.org/10.1134/S1990793122020233
  42. G.N. Gerasimov, V.F. Gromov, M.I. Ikim, L.I. Trakhtenberg. Russ. J. Phys. Chem. B: Focus on Physics, 15, 1072 (2021). https://doi.org/10.1134/S1990793121060038
  43. G.V. Simbirtseva, S.D. Babenko. Russ. J. Phys. Chem. B: Focus on Physics, 17, 1309 (2023). https://doi.org/10.1134/S1990793123060222
  44. R.A. Marcus and N. Sutin. Biochim. Biophys. Acta Rev. Bioenergetics, 811, 265 (1985). https://doi.org/10.1016/0304-4173(85)90014-X
  45. R.M. Williams, J.M. Zwier, J.W. Verhoeven. J. Am. Chem. Soc. 117, 4093 (1995). https://doi.org/10.1021/ja00119a025
  46. С. Leng, H. Qin, Y. Si, Y. Zhao. J. Phys. Chem. C, 118, 1843 (2014).
  47. H. Yan, S. Chen, M. Lu, X. Zhu, Y. Li, D. Wu, Y. Tu, X. Zhua. Mater. Horiz. 1, 247 (2014). https://doi.org/10.1039/C3MH00105A
  48. K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganäs, J.V. Manca. Phys. Rev. B, 81, 125204 (2010). https://doi.org/10.1103/PhysRevB.81.125204
  49. T. Unger, S. Wedler, F.J. Kahle, U. Scherf, H. Bässler, A. Köhler. J. Phys. Chem. C, 121, 22739 (2017). https://doi.org/10.1021/acs.jpcc.7b09213
  50. Y. Wang, L.T. Cheng. J. Phys. Chem. 96, 1530 (1992).
  51. Y. Wang, J. Phys. Chem. 96, 764 (1992).
  52. A.J. Ward , A. Ruseckas , M.M. Kareem , B. Ebenhoch, L.A. Serrano, M. Al-Eid, B. Fitzpatrick, V.M. Rotello, G. Cooke, I.D.W. Samuel. Advan. Mater. 27, 2496 (2015). https://doi.org/10.1002/adma.201405623
  53. B.P. Karsten, R.K.M. Bouwer, J.C. Hummelen, R.M. Williams, R.A.J. Janssen. Photochem. Photobiol. Sci. 9, 1055 (2010). https://doi.org/10.1039/c0pp00098a
  54. D. Veldman, S.M.A. Chopin, S.C.J. Meskers, R.A.J. Janssen. J. Phys. Chem. A, 112, 8617 (2008). https://doi.org/10.1021/jp805949r
  55. T. Liu, D.L. Cheung, A. Troisi. Phys. Chem. Chem. Phys. 13, 21461 (2011). https://doi.org/10.1039/C1CP23084K

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Scheme of charge photoseparation processes involving interfacial CT states: E is the energy of the hot interfacial state CT(i), ECT0 is the energy of the cold state CT0, (e–, h+)neq is the nonequilibrium geminal electron-hole pair, (e–, h+)th is the geminal pair of thermalized electrons and holes.

Жүктеу (79KB)
3. Fig. 2. The probability of formation of thermalized electron-hole pairs in the Coulomb field as a function of the diffusion length for different Tef and Z0: a – Tef = 600 K (solid lines, black circles) and Tef = 1000 K (dashed lines, white circles); b – Tef = 296 K (solid lines, black squares) and Tef = 400 K (dashed lines, white squares). The numbers next to the arrows are the Z0 values. The following parameter values ​​were used: e = 3.5, rinit = 2.5 nm.

Жүктеу (156KB)
4. Fig. 3. Dependence of the parameter Y = r2w0exp(−rc/r) on the distance between thermalized electrons and holes at Tef = 600 K (solid lines) and Tef = T = 296 K (dashed lines). The numbers next to the curves are the values ​​of the diffusion length Lth (in nm). The dash-dotted curve shows the dependence of the “Onsager” factor exp(−rc /r) on r. The following parameter values ​​were used: Z0 = 500, T = 296 K, rc = 16.13 nm, ε = 3.5.

Жүктеу (121KB)
5. Fig. 4. Dependence of the probability of dissociation of the cold interphase state CT0 on the strength of the applied electric field at R = 1 nm (solid lines) and at R = 1.3 nm (dashed lines). The numbers next to the curves are the values ​​of tct µ/η (measured in cm2 V–1).

Жүктеу (112KB)
6. Fig. 5. Dependence of the probability Q1 on the strength of the applied electric field at Tef = 1000 K (solid lines, tct µ/η = 10–9 cm2 V–1) and Tef = 600 K (dashed lines, tct µ/η = 10–9 cm2 V–1). The dotted curves were obtained for tct µ/η = 10–12 cm2 V–1. The numbers next to the curves and next to the arrow are the values ​​of the diffusion length Lth (in nm). The following parameter values ​​were used: T = 296 K, ε = 3.5, rinit = 2.5 nm, Z0 = 500.

Жүктеу (124KB)
7. Fig. 6. Dependence of the probability Q1 on the strength of the applied electric field at Tef = 800 K (solid lines, tct µ/η = 10–9 cm2 V–1) and Tef = 400 K (dashed lines, tct µ/η = 10–9 cm2 V–1). Dotted lines show the graphs of Q1(F ), obtained for tct µ/η = 10–12 cm2 V–1. The numbers next to the curves and next to the arrow are the values ​​of the diffusion length Lth (in nm). The following parameter values ​​were used: T = 296 K, ε = 3.5, rinit = 2.5 nm, Z0 = 500.

Жүктеу (141KB)
8. Fig. 7. Rate constant of the reverse electron transfer as a function of the reaction energy. The values ​​of kET were calculated using equation (B.1) for λ = 0.4 eV (solid lines) and for λ = 0.2 eV (dashed lines). The numbers next to the curves are the values ​​of V0 (in meV); T = 296 K.

Жүктеу (85KB)
9. Supplement A
Жүктеу (223KB)
10. Supplement B
Жүктеу (286KB)
11. Supplement C
Жүктеу (278KB)

© Russian Academy of Sciences, 2024