Structural studies of ion channels: achievements, problems and perspectives
- Авторлар: Zhorov B.S.1,2, Tikhonov D.B.1
-
Мекемелер:
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences
- McMaster University
- Шығарылым: Том 41, № 5-6 (2024)
- Беттер: 383-399
- Бөлім: ОБЗОРЫ
- URL: https://permmedjournal.ru/0233-4755/article/view/667416
- DOI: https://doi.org/10.31857/S0233475524050033
- EDN: https://elibrary.ru/cbwmyt
- ID: 667416
Дәйексөз келтіру
Аннотация
The superfamily of membrane proteins known as P-loop channels encompasses potassium, sodium, and calcium channels, as well as TRP channels and ionotropic glutamate receptors. An increasing number of crystal and cryo-EM structures are uncovering both general and specific features of these channels. Fundamental folding principles, the arrangement of structural segments, key residues that influence ionic selectivity, gating, and binding sites for toxins and medically relevant ligands have now been firmly established. The advent of AlphaFold2 (AF2) models represents another significant step in computationally predicting protein structures. Comparison of experimental P-loop channel structures with their corresponding AF2 models shows consistent folding patterns in experimentally resolved regions. Despite this remarkable progress, many crucial structural details, particularly important for predicting the outcomes of mutations and designing new medically relevant ligands, remain unresolved. Certain methodological challenges currently hinder the direct assessment of such details. Until the next methodological breakthrough occurs, a promising approach to analyzing ion channel structures in greater depth involves integrating various experimental and theoretical methods.
Толық мәтін

Авторлар туралы
B. Zhorov
Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences; McMaster University
Email: denistikhonov2002@yahoo.com
Department of Biochemistry and Biomedical Sciences, McMaster University
Ресей, St. Petersburg, 194223; Hamilton, CanadaD. Tikhonov
Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: denistikhonov2002@yahoo.com
Ресей, St. Petersburg, 194223
Әдебиет тізімі
- Khakh B.S., North R.A. 2012. Neuromodulation by extracellular ATP and P2X receptors in the CNS. Neuron. 76 (1), 51–69. doi: 10.1016/j.neuron.2012.09.024
- Nilius B., Owsianik G. 2011. The transient receptor potential family of ion channels. Genome Biol. 12 (3), 218. doi: 10.1186/gb-2011-12-3-218
- Caterina M.J., Schumacher M.A., Tominaga M., Rosen T.A., Levine J.D., Julius D. 1997. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature. 389 (6653), 816–824. doi: 10.1038/39807
- Wemmie J.A., Price M.P., Welsh M.J. 2006. Acid-sensing ion channels: Advances, questions and therapeutic opportunities. Trends Neurosci. 29 (10), 578–586. doi: 10.1016/j.tins.2006.06.014
- Latorre R., Castillo K., Carrasquel-Ursulaez W., Sepulveda R.V., Gonzalez-Nilo F., Gonzalez C., Alvarez O. 2017. Molecular determinants of BK channel functional diversity and functioning. Physiol. Rev. 97 (1), 39–87. doi: 10.1152/physrev.00001.2016
- MacKinnon R. 2003. Potassium channels. FEBS Lett. 555 (1), 62–65. doi: 10.1016/s0014-5793(03)01104-9
- Venkatachalam K., Montell C. 2007. TRP channels. Annu. Rev. Biochem. 76, 387–417. doi: 10.1146/annurev.biochem.75.103004.142819
- Wulff H., Zhorov B.S. 2008. K+ channel modulators for the treatment of neurological disorders and autoimmune diseases. Chem. Rev. 108 (5), 1744–1773. doi: 10.1021/cr078234p
- Hansen K.B., Wollmuth L.P., Bowie D., Furukawa H., Menniti F.S., Sobolevsky A.I., Swanson G.T., Swanger S.A., Greger I.H., Nakagawa T., McBain C.J., Jayaraman V., Low C.M., Dell’Acqua M.L., Diamond J.S., Camp C.R., Perszyk R.E., Yuan H., Traynelis S.F. 2021. Structure, function, and pharmacology of glutamate receptor ion channels. Pharmacol. Rev. 73 (4), 298–487. doi: 10.1124/pharmrev.120.000131
- Catterall W.A. 2011. Voltage-gated calcium channels. Cold Spring Harb. Perspect. Biol. 3 (8), a003947. doi: 10.1101/cshperspect.a003947
- Catterall W.A. 2012. Voltage-gated sodium channels at 60: Structure, function and pathophysiology. J. Physiol. 590 (11), 2577–2589. doi: 10.1113/jphysiol.2011.224204
- Huang Y., Fliegert R., Guse A.H., Lu W., Du J. 2020. A structural overview of the ion channels of the TRPM family. Cell Calcium. 85, 102111. doi: 10.1016/j.ceca.2019.102111
- Noreng S., Li T., Payandeh J. 2021. Structural pharmacology of voltage-gated sodium channels. J. Mol. Biol. 433 (17), 166967. doi: 10.1016/j.jmb.2021.166967
- Enyedi P., Czirjak G. 2010. Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol. Rev. 90 (2), 559–605. doi: 10.1152/physrev.00029.2009
- Wollmuth L.P., Sobolevsky A.I. 2004. Structure and gating of the glutamate receptor ion channel. Trends Neurosci. 27 (6), 321–328. doi: 10.1016/j.tins.2004.04.005
- Zhorov B.S., Tikhonov D.B. 2004. Potassium, sodium, calcium and glutamate-gated channels: Pore architecture and ligand action. J. Neurochem. 88 (4), 782–799. doi: 10.1111/j.1471-4159.2004.02261.x
- Lipscombe D., Helton T.D., Xu W. 2004. L-type calcium channels: The low down. J. Neurophysiol. 92 (5), 2633–2641. doi: 10.1152/jn.00486.2004
- Mayer M.L., Armstrong N. 2004. Structure and function of glutamate receptor ion channels. Annu. Rev. Physiol. 66, 161–181. doi: 10.1146/annurev.physiol.66.050802.084104
- Mazzolini M., Marchesi A., Giorgetti A., Torre V. 2010. Gating in CNGA1 channels. Pflugers Arch. 459 (4), 547–555. doi: 10.1007/s00424-009-0751-2
- Grizel A.V., Glukhov G.S., Sokolova O.S. 2014. Mechanisms of activation of voltage-gated potassium channels. Acta Naturae. 6 (4), 10–26.
- Bagneris C., Naylor C.E., McCusker E.C., Wallace B.A. 2015. Structural model of the open-closed-inactivated cycle of prokaryotic voltage-gated sodium channels. J. Gen. Physiol. 145 (1), 5–16. doi: 10.1085/jgp.201411242
- Liu C., Montell C. 2015. Forcing open TRP channels: Mechanical gating as a unifying activation mechanism. Biochem. Biophys. Res. Commun. 460 (1), 22–25. doi: 10.1016/j.bbrc.2015.02.067
- Armstrong C.M., Hille B. 1972. The inner quaternary ammonium ion receptor in potassium channels of the node of Ranvier. J. Gen. Physiol. 59 (4), 388–400. doi: 10.1085/jgp.59.4.388
- Heinemann S.H., Terlau H., Stuhmer W., Imoto K., Numa S. 1992. Calcium channel characteristics conferred on the sodium channel by single mutations. Nature. 356 (6368), 441–443. doi: 10.1038/356441a0
- Dudley S.C. Jr., Chang N., Hall J., Lipkind G., Fozzard H.A., French R.J. 2000. mu-conotoxin GIIIA interactions with the voltage-gated Na(+) channel predict a clockwise arrangement of the domains. J. Gen. Physiol. 116 (5), 679–690. doi: 10.1085/jgp.116.5.679
- Lipkind G.M., Fozzard H.A. 1994. A structural model of the tetrodotoxin and saxitoxin binding site of the Na+ channel. Biophys. J. 66 (1), 1–13. doi: 10.1016/S0006-3495(94)80746-5
- Doyle D.A., Morais Cabral J., Pfuetzner R.A., Kuo A., Gulbis J.M., Cohen S.L., Chait B.T., MacKinnon R. 1998. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 280 (5360), 69–77. doi: 10.1126/science.280.5360.69
- Jiang Y., Lee A., Chen J,. Cadene M., Chait B.T., MacKinnon R. 2002. Crystal structure and mechanism of a calcium-gated potassium channel. Nature. 417 (6888), 515–522. doi: 10.1038/417515a
- Clayton G.M., Altieri S., Heginbotham L., Unger V.M., Morais-Cabral J.H. 2008. Structure of the transmembrane regions of a bacterial cyclic nucleotide-regulated channel. Proc. Natl. Acad. Sci. USA. 105 (5), 1511–1515. doi: 10.1073/pnas.0711533105.
- Cordero-Morales J.F., Cuello L.G., Zhao Y., Jogini V., Cortes D.M, Roux B., Perozo E. 2006. Molecular determinants of gating at the potassium-channel selectivity filter. Nat. Struct. Mol. Biol. 13 (4), 311–318. doi: 10.1038/nsmb1069
- Cuello L.G., Jogini V., Cortes D.M., Pan A.C., Gagnon D.G., Dalmas O., Cordero-Morales J.F., Chakrapani S., Roux B., Perozo E. 2010. Structural basis for the coupling between activation and inactivation gates in K+ channels. Nature. 466 (7303), 272–275. doi: 10.1038/nature09136
- Xiong W., Li R.A., Tian Y., Tomaselli G.F. 2003. Molecular motions of the outer ring of charge of the sodium channel: Do they couple to slow inactivation? J. Gen. Physiol. 122 (3), 323–332. doi: 10.1085/jgp.200308881
- Abderemane-Ali F., Findeisen F., Rossen N.D., Minor D.L.Jr. 2019. A selectivity filter gate controls voltage-gated calcium channel calcium-dependent inactivation. Neuron. 101 (6), 1134–1149 e3. doi: 10.1016/j.neuron.2019.01.011
- Gibor G., Yakubovich D., Rosenhouse-Dantsker A., Peretz A., Schottelndreier H., Seebohm G., Dascal N., Logothetis D.E., Paas Y., Attali B. 2007. An inactivation gate in the selectivity filter of KCNQ1 potassium channels. Biophys. J. 93 (12), 4159–4172. doi: 10.1529/biophysj.107.107987
- Cao E., Liao M., Cheng Y., Julius D. 2013. TRPV1 structures in distinct conformations reveal activation mechanisms. Nature. 504 (7478), 113–118. doi: 10.1038/nature12823
- Twomey E.C., Yelshanskaya M.V., Grassucci R.A., Frank J., Sobolevsky A.I. 2017. Channel opening and gating mechanism in AMPA-subtype glutamate receptors. Nature. 549 (7670), 60–65. doi: 10.1038/nature23479
- Tikhonov D.B., Zhorov B.S., Magazanik L.G. 1999. Intersegment hydrogen bonds as possible structural determinants of the N/Q/R site in glutamate receptors. Biophys. J. 77 (4), 1914–1926. doi: 10.1016/S0006-3495(99)77033-5
- Huber I., Wappl E., Herzog A., Mitterdorfer J., Glossmann H., Langer T., Striessnig J. 2000. Conserved Ca2+-antagonist-binding properties and putative folding structure of a recombinant high-affinity dihydropyridine-binding domain. Biochem. J. 347 (Pt 3), 829–836.
- Lipkind G.M., Fozzard H.A. 2003. Molecular modeling of interactions of dihydropyridines and phenylalkylamines with the inner pore of the L-type Ca2+ channel. Mol. Pharmacol. 63 (3), 499–511. doi: 10.1124/mol.63.3.499
- Corry B., Vora T., Chung S.H. 2005. Electrostatic basis of valence selectivity in cationic channels. Biochim. Biophys. Acta. 1711 (1), 72–86. doi: 10.1016/j.bbamem.2005.03.002
- Lipkind G.M., Fozzard H.A. 2005. Molecular modeling of local anesthetic drug binding by voltage-gated sodium channels. Mol. Pharmacol. 68 (6), 1611–1622. doi: 10.1124/mol.105.014803
- Tikhonov D.B., Zhorov B.S. 2005. Modeling P-loops domain of sodium channel: homology with potassium channels and interaction with ligands. Biophys. J. 88 (1), 184–197. doi: 10.1529/biophysj.104.048173
- O’Reilly A.O., Khambay B.P., Williamson M.S., Field L.M., Wallace B.A., Davies T.G. 2006. Modelling insecticide-binding sites in the voltage-gated sodium channel. Biochem. J. 396 (2), 255–263. doi: 10.1042/BJ20051925
- Cosconati S., Marinelli L., Lavecchia A., Novellino E. 2007. Characterizing the 1,4-dihydropyridines binding interactions in the L-type Ca2+ channel: Model construction and docking calculations. J. Med. Chem. 50 (7), 1504–1513. doi: 10.1021/jm061245a
- Alpert L.A., Fozzard H.A., Hanck D.A., Makielski J.C. 1989. Is there a second external lidocaine binding site on mammalian cardiac cells? Am. J. Physiol. 257 (1 Pt 2), H79–84. doi: 10.1152/ajpheart.1989.257.1.H79
- Catterall W.A., Striessnig J. 1992. Receptor sites for Ca2+ channel antagonists. Trends Pharmacol. Sci. 13 (6), 256–262. doi: 10.1016/0165-6147(92)90079-l
- Hockerman G.H., Peterson B.Z., Johnson B.D., Catterall W.A. 1997. Molecular determinants of drug binding and action on L-type calcium channels. Annu. Rev. Pharmacol. Toxicol. 37, 361–396. doi: 10.1146/annurev.pharmtox.37.1.361
- Jiang D., Shi H., Tonggu L., Gamal El-Din T.M., Lenaeus M.J., Zhao Y., Yoshioka C., Zheng N., Catterall W.A. 2020. Structure of the cardiac sodium channel. Cell. 180 (1), 122–134 e10. doi: 10.1016/j.cell.2019.11.041
- Jiang D., Banh R., Gamal El-Din T.M., Tonggu L., Lenaeus M.J., Pomes R., Zheng N., Catterall W.A. 2021. Open-state structure and pore gating mechanism of the cardiac sodium channel. Cell. 184 (20), 5151–5162 e11. doi: 10.1016/j.cell.2021.08.021
- Xu H., Li T., Rohou A., Arthur C.P., Tzakoniati F., Wong E., Estevez A., Kugel C., Franke Y., Chen J., Ciferri C., Hackos D.H., Koth C.M., Payandeh J. 2019. Structural basis of Nav1.7 inhibition by a gating-modifier spider toxin. Cell. 176 (5), 1238–1239. doi: 10.1016/j.cell.2019.01.047
- Jiang D., Tonggu L., Gamal El-Din T.M., Banh R., Pomes R., Zheng N., Catterall W.A. 2021. Structural basis for voltage-sensor trapping of the cardiac sodium channel by a deathstalker scorpion toxin. Nat. Commun. 12 (1), 128. doi: 10.1038/s41467-020-20078-3
- Lenaeus M.J., Gamal El-Din T.M., Ing C., Ramanadane K., Pomes R., Zheng N., Catterall W.A. 2017. Structures of closed and open states of a voltage-gated sodium channel. Proc. Natl. Acad. Sci. USA. 114 (15), E3051–E3060. doi: 10.1073/pnas.1700761114
- Wisedchaisri G., Tonggu L., McCord E., Gamal El-Din T.M., Wang L., Zheng N., Catterall W.A. 2019. Resting-state structure and gating mechanism of a voltage-gated sodium channel. Cell. 178 (4), 993–1003 e12. doi: 10.1016/j.cell.2019.06.031
- Korkosh V.S., Kiselev A.M., Mikhaylov E.N., Kostareva A.A., Zhorov B.S. 2019. Atomic mechanisms of timothy syndrome-associated mutations in calcium channel Cav1.2. Front. Physiol. 10, 335. doi: 10.3389/fphys.2019.00335
- Korkosh V.S., Zaytseva A.K., Kostareva A.A., Zhorov B.S. 2021. Intersegment contacts of potentially damaging variants of cardiac sodium channel. Front. Pharmacol. 12, 756415. doi: 10.3389/fphar.2021.756415
- Zaytseva A.K., Boitsov A.S., Kostareva A.A., Zhorov B.S. 2021. Possible interactions of extracellular loop IVP2-S6 with voltage-sensing domain III in cardiac sodium channel. Front. Pharmacol. 12, 742508. doi: 10.3389/fphar.2021.742508
- Berneche S., Roux B. 2000. Molecular dynamics of the KcsA K(+) channel in a bilayer membrane. Biophys. J. 78 (6), 2900–2917. doi: 10.1016/S0006-3495(00)76831-7
- Shrivastava I.H., Sansom M.S. 2000. Simulations of ion permeation through a potassium channel: Molecular dynamics of KcsA in a phospholipid bilayer. Biophys. J. 78 (2), 557–570. doi: 10.1016/S0006-3495(00)76616-1
- Ulmschneider M.B., Bagneris C., McCusker E.C., Decaen P.G., Delling M., Clapham D.E., Ulmschneider J.P., Wallace B.A. 2013. Molecular dynamics of ion transport through the open conformation of a bacterial voltage-gated sodium channel. Proc. Natl. Acad. Sci. USA. 110 (16), 6364–6369. doi: 10.1073/pnas.1214667110
- Allen T.W., Kuyucak S., Chung S.H. 1999. Molecular dynamics study of the KcsA potassium channel. Biophys. J. 77 (5), 2502–2516. doi: 10.1016/S0006-3495(99)77086-4
- Biggin P.C., Smith G.R., Shrivastava I., Choe S., Sansom M.S. 2001. Potassium and sodium ions in a potassium channel studied by molecular dynamics simulations. Biochim. Biophys. Acta. 1510 (1–2), 1–9. doi: 10.1016/s0005-2736(00)00345-x
- Noskov S.Y., Berneche S., Roux B. 2004. Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature. 431 (7010), 830–834. doi: 10.1038/nature02943
- Corry B., Thomas M. 2012. Mechanism of ion permeation and selectivity in a voltage gated sodium channel. J. Am. Chem. Soc. 134 (3), 1840–1846. doi: 10.1021/ja210020h
- Chakrabarti N., Ing C., Payandeh J., Zheng N., Catterall W.A., Pomes R. 2013. Catalysis of Na+ permeation in the bacterial sodium channel Na(V)Ab. Proc. Natl. Acad. Sci. U. S. A. 110 (28), 11331–11336. doi: 10.1073/pnas.1309452110
- Flood E., Boiteux C., Allen T.W. 2018. Selective ion permeation involves complexation with carboxylates and lysine in a model human sodium channel. PLoS Comput. Biol. 14 (9), e1006398. doi: 10.1371/journal.pcbi.1006398
- Zhorov B.S. 2021. Possible mechanism of ion selectivity in eukaryotic voltage-gated sodium channels. J. Phys. Chem. B. 125 (8), 2074–2088. doi: 10.1021/acs.jpcb.0c11181
- Ahern C.A., Payandeh J., Bosmans F., Chanda B. 2016. The hitchhiker’s guide to the voltage-gated sodium channel galaxy. J. Gen. Physiol. 147 (1), 1–24. doi: 10.1085/jgp.201511492
- Catterall W.A., Lenaeus M.J., Gamal El-Din T.M. 2020. Structure and pharmacology of voltage-gated sodium and calcium channels. Annu. Rev. Pharmacol. Toxicol. 60, 133–154. doi: 10.1146/annurev-pharmtox-010818-021757
- Koivisto A.P., Belvisi M.G., Gaudet R., Szallasi A. 2022. Advances in TRP channel drug discovery: From target validation to clinical studies. Nat. Rev. Drug Discov. 21 (1), 41–59. doi: 10.1038/s41573-021-00268-4
- Hoshi T., Zagotta W.N., Aldrich R.W. 1990. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science. 250 (4980), 533–538. doi: 10.1126/science.2122519
- Zagotta W.N., Hoshi T., Aldrich R.W. 1990. Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB. Science. 250 (4980), 568–571. doi: 10.1126/science.2122520
- Gomez-Lagunas F., Armstrong C.M. 1994. The relation between ion permeation and recovery from inactivation of ShakerB K+ channels. Biophys. J. 67 (5), 1806–1815. doi: 10.1016/S0006-3495(94)80662-9
- Yan Z., Zhou Q., Wang L., Wu J., Zhao Y., Huang G., Peng W., Shen H., Lei J., Yan N. 2017. Structure of the Nav1.4-beta1 сomplex from еlectric еel. Cell. 170 (3), 470–482 e11. doi: 10.1016/j.cell.2017.06.039
- Tikhonov D.B., Zhorov B.S. 2020. The pore domain in glutamate-gated ion channels: Structure, drug binding and similarity with potassium channels. Biochim. Biophys. Acta. Biomembr. 1862 (10), 183401. doi: 10.1016/j.bbamem.2020.183401
- Catterall W.A., Swanson T.M. 2015. Structural basis for pharmacology of voltage-gated sodium and calcium channels. Mol. Pharmacol. 88 (1), 141–150. doi: 10.1124/mol.114.097659
- Catterall W.A. 2014. Sodium channels, inherited epilepsy, and antiepileptic drugs. Annu. Rev. Pharmacol. Toxicol. 54, 317–338. doi: 10.1146/annurev-pharmtox-011112-140232
- Silver K.S., Du Y., Nomura Y., Oliveira E.E., Salgado V.L., Zhorov B.S., Dong K. 2014. Voltage-gated sodium channels as insecticide targets. Adv. In Insect. Phys. 46, 389–433. doi: 10.1016/B978-0-12-417010-0.00005-7
- Korkosh V.S., Zhorov B.S., Tikhonov D.B. 2014. Folding similarity of the outer pore region in prokaryotic and eukaryotic sodium channels revealed by docking of conotoxins GIIIA, PIIIA, and KIIIA in a NavAb-based model of Nav1.4. J. Gen. Physiol. 144 (3), 231–244. doi: 10.1085/jgp.201411226
- Tomasic T., Hartzoulakis B., Zidar N., Chan F., Kirby R.W., Madge D.J., Peigneur S., Tytgat J., Kikelj D. 2013. Ligand- and structure-based virtual screening for clathrodin-derived human voltage-gated sodium channel modulators. J. Chem. Inf. Model. 53 (12), 3223–3232. doi: 10.1021/ci400505e
- Palestro P.H., Enrique N., Goicoechea S., Villalba M.L., Sabatier L.L., Martin P., Milesi V., Bruno Blanch L.E., Gavernet L. 2018. Searching for new leads to treat epilepsy: Target-based virtual screening for the discovery of anticonvulsant agents. J. Chem. Inf. Model. 58 (7), 1331–1342. doi: 10.1021/acs.jcim.7b00721
- Tikhonov D.B., Bruhova I., Zhorov B.S. 2006. Atomic determinants of state-dependent block of sodium channels by charged local anesthetics and benzocaine. FEBS Lett. 580 (26), 6027–6032. doi: 10.1016/j.febslet.2006.10.035
- Bruhova I., Tikhonov D.B., Zhorov B.S. 2008. Access and binding of local anesthetics in the closed sodium channel. Mol. Pharmacol. 74 (4), 1033–1045.
- Hille B. 1977. Local anesthetics: Hydrophilic and hydrophobic pathways for the drug-receptor reaction. J. Gen. Physiol. 69 (4), 497–515. doi: 10.1085/jgp.69.4.497
- Payandeh J., Scheuer T., Zheng N., Catterall W.A. 2011. The crystal structure of a voltage-gated sodium channel. Nature. 475 (7356), 353–358. doi: 10.1038/nature10238
- Martin L.J., Corry B. 2014. Locating the route of entry and binding sites of benzocaine and phenytoin in a bacterial voltage gated sodium channel. PLoS Comput. Biol. 10 (7), e1003688. doi: 10.1371/journal.pcbi.1003688
- Tikhonov D.B., Zhorov B.S. 2017. Mechanism of sodium channel block by local anesthetics, antiarrhythmics, and anticonvulsants. J. Gen. Physiol. 149 (4), 465–481. doi: 10.1085/jgp.201611668
- Buyan A., Sun D., Corry B. 2018. Protonation state of inhibitors determines interaction sites within voltage-gated sodium channels. Proc. Natl. Acad. Sci. USA. 115 (14), E3135–E3144. doi: 10.1073/pnas.1714131115
- Nguyen P.T., DeMarco K.R., Vorobyov I., Clancy C.E., Yarov-Yarovoy V. 2019. Structural basis for antiarrhythmic drug interactions with the human cardiac sodium channel. Proc. Natl. Acad. Sci. U. S. A. 116 (8), 2945–2954. doi: 10.1073/pnas.1817446116
- Li Z., Jin X., Wu T., Huang G., Wu K., Lei J., Pan X., Yan N. 2021. Structural basis for pore blockade of the human cardiac sodium channel Nav 1.5 by the antiarrhythmic drug Quinidine*. Angew. Chem. Int. Ed. Engl. 60 (20), 11474–11480. doi: 10.1002/anie.202102196
- Fozzard H.A., Lipkind G.M. 2010. The tetrodotoxin binding site is within the outer vestibule of the sodium channel. Mar. Drugs. 8 (2), 219–234. doi: 10.3390/md8020219
- Chen R., Chung S.H. 2012. Binding modes of mu-conotoxin to the bacterial sodium channel (NaVAb). Biophys. J. 102 (3), 483–488. doi: 10.1016/j.bpj.2011.12.041
- Tikhonov D.B., Zhorov B.S. 2012. Architecture and pore block of eukaryotic voltage-gated sodium channels in view of NavAb bacterial sodium channel structure. Mol. Pharmacol. 82 (1), 97–104. doi: 10.1124/mol.112.078212
- Mahdavi S., Kuyucak S. 2014. Molecular dynamics study of binding of micro-conotoxin GIIIA to the voltage-gated sodium channel Na(v)1.4. PLoS One. 9 (8), e105300. doi: 10.1371/journal.pone.0105300
- Xu L., Li D., Ding J., Pan L., Ding X. 2018. Insight into tetrodotoxin blockade and resistance mechanisms of Nav 1.2 sodium channel by theoretical approaches. Chem. Biol. Drug Des. 92 (2), 1445–1457. doi: 10.1111/cbdd.13310
- Shen H., Li Z., Jiang Y., Pan X., Wu J., Cristofori-Armstrong B., Smith J.J., Chin Y.K.Y., Lei J., Zhou Q., King G.F., Yan N. 2018. Structural basis for the modulation of voltage-gated sodium channels by animal toxins. Science. 362 (6412), eaau259. doi: 10.1126/science.aau2596
- Shen H., Liu D., Wu K., Lei J., Yan N. 2019. Structures of human Nav1.7 channel in complex with auxiliary subunits and animal toxins. Science. 363 (6433), 1303–1308. doi: 10.1126/science.aaw2493
- Pan X., Li Z., Huang X., Huang G., Gao S., Shen H., Liu L., Lei J., Yan N. 2019. Molecular basis for pore blockade of human Na(+) channel Nav1.2 by the mu-conotoxin KIIIA. Science. 363 (6433), 1309–1313. doi: 10.1126/science.aaw2999
- Zamponi G.W., Striessnig J., Koschak A., Dolphin A.C. 2015 The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol. Rev. 67 (4), 821–870. doi: 10.1124/pr.114.009654
- Godfraind T. 2017. Discovery and development of calcium channel blockers. Front. Pharmacol. 8, 286. doi: 10.3389/fphar.2017.00286
- Tikhonov D.B., Zhorov B.S. 2008. Molecular modeling of benzothiazepine binding in the L-type calcium channel. J. Biol. Chem. 283 (25), 17594–17604. doi: 10.1074/jbc.M800141200
- Cheng R.C, Tikhonov D.B., Zhorov B.S. 2009. Structural model for phenylalkylamine binding to L-type calcium channels. J. Biol. Chem. 284 (41), 28332–28342. doi: 10.1074/jbc.M109.027326
- Tikhonov D.B., Zhorov B.S. 2009. Structural model for dihydropyridine binding to L-type calcium channels. J. Biol. Chem. 284 (28), 19006–19017. doi: 10.1074/jbc.M109.011296
- Li W., Shi G. 2019. How CaV1.2-bound verapamil blocks Ca(2+) influx into cardiomyocyte: Atomic level views. Pharmacol. Res. 139, 153–157. doi: 10.1016/j.phrs.2018.11.017
- Gao S., Yan N. 2021. Structural basis of the modulation of the voltage-gated calcium ion channel Cav 1.1 by dihydropyridine compounds. Angew. Chem. Int. Ed. Engl. 60 (6), 3131–3137. doi: 10.1002/anie.202011793
- Tikhonov D.B., Zhorov B.S. 2017. Conservation and variability of the pore-lining helices in P-loop channels. Channels 11 (6), 660–672. doi: 10.1080/19336950.2017.1395536
- Zubcevic L., Lee S.Y. 2019. The role of pi-helices in TRP channel gating. Curr. Opin. Struct. Biol. 58, 314–323. doi: 10.1016/j.sbi.2019.06.011
- Yelshanskaya M.V., Nadezhdin K.D., Kurnikova M.G., Sobolevsky A.I. 2021. Structure and function of the calcium-selective TRP channel TRPV6. J. Physiol. 599 (10), 2673–2697. doi: 10.1113/JP279024
- McGoldrick L.L., Singh A.K., Saotome K., Yelshanskaya M.V., Twomey E.C., Grassucci R.A., Sobolevsky A.I. 2018. Opening of the human epithelial calcium channel TRPV6. Nature. 553 (7687), 233–237. doi: 10.1038/nature25182
- Zubcevic L., Herzik M.A.Jr., Chung B.C., Liu Z., Lander G.C., Lee S.Y. 2016. Cryo-electron microscopy structure of the TRPV2 ion channel. Nat. Struct. Mol. Biol. 23 (2), 180–186. doi: 10.1038/nsmb.3159
- Zhao Y., Huang G., Wu J., Wu Q., Gao S., Yan Z., Lei J., Yan N. 2019. Molecular basis for ligand modulation of a mammalian voltage-gated Ca(2+) channel. Cell. 177 (6), 1495–1506. e12. doi: 10.1016/j.cell.2019.04.043
- Kokubun S., Prod’hom B., Becker C., Porzig H., Reuter H. 1986. Studies on Ca channels in intact cardiac cells: Voltage-dependent effects and cooperative interactions of dihydropyridine enantiomers. Mol. Pharmacol. 30 (6), 571–584.
- Correa A.M., Bezanilla F., Latorre R. 1992. Gating kinetics of batrachotoxin-modified Na+ channels in the squid giant axon. Voltage and temperature effects. Biophys. J. 61 (5), 1332–1352. doi: 10.1016/S0006-3495(92)81941-0
- Quandt F.N., Narahashi T. 1982. Modification of single Na+ channels by batrachotoxin. Proc. Natl. Acad. Sci. U. S. A. 79 (21), 6732–6736. doi: 10.1073/pnas.79.21.6732
- Garber S.S., Miller C. 1987. Single Na+ channels activated by veratridine and batrachotoxin. J. Gen. Physiol. 89 (3), 459–480. doi: 10.1085/jgp.89.3.459
- Tikhonov D.B., Zhorov B.S. 2023. Mechanisms of dihydropyridine agonists and antagonists in view of cryo-EM structures of calcium and sodium channels. J. Gen. Physiol. 155 (11), e202313418. doi: 10.1085/jgp.202313418
- Tunyasuvunakool K., Adler J., Wu Z., Green T., Zielinski M., Zidek A., Bridgland A., Cowie A., Meyer C., Laydon A., Velankar S., Kleywegt G.J., Bateman A., Evans R., Pritzel A., Figurnov M., Ronneberger O., Bates R., Kohl S.A.A., Potapenko A., Ballard A.J., Romera-Paredes B., Nikolov S., Jain R., Clancy E., Reiman D., Petersen S., Senior A.W., Kavukcuoglu K., Birney E., Kohli P., Jumper J., Hassabis D. 2021. Highly accurate protein structure prediction for the human proteome. Nature. 596 (7873), 590–596. doi: 10.1038/s41586-021-03828-1
- Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Zidek A., Potapenko A., Bridgland A., Meyer C., Kohl S.A.A., Ballard A.J., Cowie A., Romera-Paredes B., Nikolov S., Jain R., Adler J., Back T., Petersen S., Reiman D., Clancy E., Zielinski M., Steinegger M., Pacholska M., Berghammer T., Bodenstein S., Silver D., Vinyals O., Senior A.W., Kavukcuoglu K., Kohli P., Hassabis D. 2021. Highly accurate protein structure prediction with AlphaFold. Nature. 596 (7873), 583–589. doi: 10.1038/s41586-021-03819-2
- Baek M., DiMaio F., Anishchenko I., Dauparas J., Ovchinnikov S., Lee G.R., Wang J., Cong Q., Kinch L.N., Schaeffer R.D., Millan C., Park H., Adams C., Glassman C.R., DeGiovanni A., Pereira J.H., Rodrigues A.V., van Dijk A.A., Ebrecht A.C., Opperman D.J., Sagmeister T., Buhlheller C., Pavkov-Keller T., Rathinaswamy M.K., Dalwadi U., Yip .K., Burke J.E., Garcia K.C., Grishin N.V., Adams P.D., Read R.J., Baker D. 2021. Accurate prediction of protein structures and interactions using a three-track neural network. Science. 373 (6557), 871–876. doi: 10.1126/science.abj8754
- Tikhonov D.B., Zhorov B.S. 2022. P-Loop channels: Experimental structures, and physics-based and neural networks-based models. Membranes. 12 (2), 229. doi: 10.3390/membranes12020229
- Schwartz P.J., Crotti L., Insolia R. 2012. Long-QT syndrome: From genetics to management. Circ. Arrhythm. Electrophysiol. 5 (4), 868–877. doi: 10.1161/CIRCEP.111.962019
- Antzelevitch C., Yan G.X., Ackerman M.J., Borggrefe M., Corrado D., Guo J., Gussak I., Hasdemir C., Horie M., Huikuri H., Ma C., Morita H., Nam G.B., Sacher F., Shimizu W., Viskin S., Wilde A.A. 2016. J-Wave syndromes expert consensus conference report: Emerging concepts and gaps in knowledge. J. Arrhythm. 32 (5), 315–339. doi: 10.1016/j.joa.2016.07.002
- Steinlein O.K. 2004. Genetic mechanisms that underlie epilepsy. Nat. Rev. Neurosci. 5 (5), 400–408. doi: 10.1038/nrn1388
- Catterall W.A., Kalume F., Oakley J.C. 2010. NaV1.1 channels and epilepsy. J. Physiol. 588 (Pt 11), 1849–1859. doi: 10.1113/jphysiol.2010.187484
- Wu J., Yan Z., Li Z., Qian X., Lu S., Dong M., Zhou Q., Yan N. 2016. Structure of the voltage-gated calcium channel Ca(v)1.1 at 3.6 A resolution. Nature. 537 (7619), 191–196. doi: 10.1038/nature19321
- Meadows L.S., Isom L.L. 2005. Sodium channels as macromolecular complexes: implications for inherited arrhythmia syndromes. Cardiovasc. Res. 67 (3), 448–458. doi: 10.1016/j.cardiores.2005.04.003
- Haworth A.S., Brackenbury W.J. 2019. Emerging roles for multifunctional ion channel auxiliary subunits in cancer. Cell. Calcium. 80: 125–140. doi: 10.1016/j.ceca.2019.04.005
- Dolphin A.C. 2016. Voltage-gated calcium channels and their auxiliary subunits: Physiology and pathophysiology and pharmacology. J. Physiol. 594 (19), 5369–5390. doi: 10.1113/JP272262
- Gonzalez-Perez V., Lingle C.J. 2019. Regulation of BK сhannels by beta and gamma subunits. Annu. Rev. Physiol. 81, 113–137. doi: 10.1146/annurev-physiol-022516-034038
- Zhorov B.S., Du Y., Song W., Luo N., Gordon D., Gurevitz M., Dong K. 2021. Mapping the interaction surface of scorpion beta-toxins with an insect sodium channel. Biochem. J. 478 (14), 2843–2869. doi: 10.1042/BCJ20210336
- Buel G.R., Walters K.J. 2022. Can AlphaFold2 predict the impact of missense mutations on structure? Nat. Struct. Mol. Biol. 29 (1), 1–2. doi: 10.1038/s41594-021-00714-2
Қосымша файлдар
