Multiple mechanisms of allosteric regulation of the luteninizing hormone receptor

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The regulatory effects of luteinizing hormone (LH) and chorionic gonadotropin (CG) are realized through the activation of the G-protein coupled LH/CG receptor (LH/CG-R). The result of this is the activation of various types of G proteins, which leads to stimulation (Gs) or inhibition (Gi) of the cAMP-dependent pathway and stimulation of calcium signaling (Gq/11, Gi), and the recruitment of β-arrestins, which prevent G protein signaling through receptor internalization and downregulation, but can also activate the mitogen-activated protein kinase cascade. Despite a certain similarity in the effects of LH and CG, there are differences between them both in efficiency and in the pattern of regulation of LH/CG-R. This is a consequence of differences in the affinity of LH and CG to the orthosteric site of the receptor, as well as differences at the level of allosteric regulation of the receptor, which is due to the presence of a C-terminal extension in the β-subunit of CG, including sites for O-glycosylation, and the variability of N-glycosylation of α- and β-subunits of gonadotropins. Moreover, the number of N-glycans, the degree of their branching and charge differ, which leads to different efficiency of activation of intracellular cascades, affecting the physiological response of the reproductive system to gonadotropins. Of great importance is the formation of homodi(oligo)meric complexes of LH/CG-R and its heterocomplexes with the follicle-stimulating hormone receptor, where protomers allosterically influence the efficiency of LH/CG-R activation and the bias of signal transduction. Taking into account the large number of allosteric sites in LH/CG-R, the development of low-molecular allosteric regulators is underway, including agonists based on thieno[2,3-d]-pyrimidine and peptides derived from the cytoplasmic loops of LH/CG-R. These regulators can become prototypes of drugs for correcting the functions of the reproductive system. This review is devoted to the analysis of data on the similarities and differences in the signaling and physiological effects of gonadotropins with LH activity, the role of allosteric mechanisms in this, and the prospects for creating allosteric regulators of LH/CG-R.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Shpakov

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: alex_shpakov@list.ru
Ресей, St. Petersburg, 194223

K. Derkach

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Email: derkatch_k@list.ru
Ресей, St. Petersburg, 194223

Әдебиет тізімі

  1. Agwuegbo U.T., Colley E., Albert A.P. et al. Differential FSH Glycosylation Modulates FSHR Oligomerization and Subsequent cAMP Signaling // Front Endocrinol. (Lausanne). 2021. V. 12. 765727. https://doi.org/10.3389/fendo.2021.765727
  2. Arey B.J. Allosteric modulators of glycoprotein hormone receptors: Discovery and therapeutic potential // Endocrine. 2008. V. 34. № 1–3. P. 1–10. https://doi.org/10.1007/s12020-008-9098-2
  3. Arnhold I.J., Lofrano-Porto A., Latronico A.C. Inactivating mutations of luteinizing hormone beta-subunit or luteinizing hormone receptor cause oligo-amenorrhea and infertility in women // Horm. Res. 2009. V. 71. № 2. P. 75–82. https://doi.org/10.1159/000183895
  4. Ayoub M.A., Landomiel F., Gallay N. et al. Assessing Gonadotropin Receptor Function by Resonance Energy Transfer-Based Assays // Front Endocrinol. (Lausanne). 2015. V. 6. 130. https://doi.org/10.3389/fendo.2015.00130
  5. Ayoub M.A., Yvinec R., Jégot G. et al. Profiling of FSHR negative allosteric modulators on LH/CGR reveals biased antagonism with implications in steroidogenesis // Mol. Cell. Endocrinol. 2016. V. 436. P. 10–22. https://doi.org/10.1016/j.mce.2016.07.013
  6. Bakhtyukov A.A., Derkach K.V., Dar’in D.V., Shpakov A.O. Thienopyrimidine derivatives specifically activate testicular steroidogenesis but do not affect thyroid functions // J. Evol. Biochem. Physiol. 2019. V. 55. № 1. P. 30–39. https://doi.org/10.1134/S0022093019010046
  7. Bakhtyukov A.A., Derkach K.V., Dar’in D.V., Stepochkina A.M., Shpakov A.O. A low molecular weight agonist of the luteinizing hormone receptor stimulates adenylyl cyclase in the testicular membranes and steroidogenesis in the testes of rats with type 1 diabetes // Biochemistry (Moscow). Suppl. Series A: Membrane and Cell Biology. 2019. V. 13. № 4. P. 301–309. https://doi.org/10.1134/S1990747819040032
  8. Bakhtyukov A.A., Derkach K.V., Gureev M.A. et al. Comparative Study of the Steroidogenic Effects of Human Chorionic Gonadotropin and Thieno[2,3-D]pyrimidine-Based Allosteric Agonist of Luteinizing Hormone Receptor in Young Adult, Aging and Diabetic Male Rats // Int. J. Mol. Sci. 2020. V. 21. № 20. 7493. https://doi.org/10.3390/ijms21207493
  9. Bakhtyukov A.A., Derkach K.V., Romanova I.V. et al. Effect of low-molecular-weight allosteric agonists of the luteinizing hormone receptor on its expression and distribution in rat testes // J. Evol. Biochem. Physiol. 2021. V. 57. № 2. P. 208–220. https://doi.org/10.1134/S0022093021020034
  10. Bakhtyukov A.A., Derkach K.V., Sorokoumov V.N. et al. The Effects of Separate and Combined Treatment of Male Rats with Type 2 Diabetes with Metformin and Orthosteric and Allosteric Agonists of Luteinizing Hormone Receptor on Steroidogenesis and Spermatogenesis // Int. J. Mol. Sci. 2021. V. 23. № 1. 198. https://doi.org/10.3390/ijms23010198
  11. Berndt S., Blacher S., Munaut C. et al. Hyperglycosylated human chorionic gonadotropin stimulates angiogenesis through TGF-β receptor activation // FASEB J. 2013. V. 27. № 4. P. 1309–1321. https://doi.org/10.1096/fj.12-213686
  12. Birken S. Specific measurement of o-linked core 2 sugar-containing isoforms of hyperglycosylated human chorionic gonadotropin by antibody b152 // Tumour. Biol. 2005. V. 26. № 3. P. 131–141. https://doi.org/10.1159/000086484
  13. Blithe D.L. N-linked oligosaccharides on free alpha interfere with its ability to combine with human chorionic gonadotropin-beta subunit // J. Biol. Chem. 1990. V. 265. № 35. P. 21951–21956.
  14. Bousfield G.R., Butnev V.Y., Butnev V.Y. Identification of twelve O-glycosylation sites in equine chorionic gonadotropin beta and equine luteinizing hormone ss by solid-phase Edman degradation // Biol. Reprod. 2001. V. 64. № 1. P. 136–147. https://doi.org/10.1095/biolreprod64.1.136
  15. Bousfield G.R., Dias J.A. Synthesis and secretion of gonadotropins including structure-function correlates // Rev. Endocr. Metab. Disord. 2011. V. 12. № 4. P. 289–302. https://doi.org/10.1007/s11154-011-9191-3
  16. Bradbury F.A., Menon K.M. Evidence that constitutively active luteinizing hormone/human chorionic gonadotropin receptors are rapidly internalized // Biochemistry. 1999. V. 38. № 27. P. 8703–8712. https://doi.org/10.1021/bi990169t
  17. Brüser A., Schulz A., Rothemund S. et al. The Activation Mechanism of Glycoprotein Hormone Receptors with Implications in the Cause and Therapy of Endocrine Diseases // J. Biol. Chem. 2016. V. 291. № 2. P. 508–520. https://doi.org/10.1074/jbc.M115.701102
  18. Butnev V.Y., Butnev V.Y., May J.V. et al. Production, purification, and characterization of recombinant hFSH glycoforms for functional studies // Mol. Cell. Endocrinol. 2015. V. 405. P. 42–51. https://doi.org/10.1016/j.mce.2015.01.026
  19. Butnev V.Y., May J.V., Brown A.R. et al. Human FSH Glycoform α-Subunit Asparagine52 Glycans: Major Glycan Structural Consistency, Minor Glycan Variation in Abundance // Front Endocrinol (Lausanne). 2022. V. 13. 767661. https://doi.org/10.3389/fendo.2022.767661
  20. Butnev V.Y., Singh V., Nguyen V.T., Bousfield G.R. Truncated equine LH beta and asparagine(56)-deglycosylated equine LH alpha combine to produce a potent FSH antagonist // J. Endocrinol. 2002. V. 172. № 3. P. 545–555. https://doi.org/10.1677/joe.0.1720545
  21. Caron P., Broussaud S., Galano-Frutos J.J., Sancho J., Savagner F. New variant (Val597Ile) in transmembrane region of the TSH receptor with human chorionic gonadotropin hypersensitivity in familial gestational hyperthyroidism // Clin Endocrinol (Oxf). 2020. V. 93. № 3. P. 339–345. https://doi.org/10.1111/cen.14215
  22. Casarini L., Lispi M., Longobardi S. et al. LH and hCG action on the same receptor results in quantitatively and qualitatively different intracellular signaling // PLoS One. 2012. V. 7. № 10. e46682. https://doi.org/10.1371/journal.pone.0046682
  23. Casarini L., Paradiso E., Lazzaretti C. et al. Regulation of antral follicular growth by an interplay between gonadotropins and their receptors // J. Assist Reprod Genet. 2022. V. 39. № 4. P. 893–904. https://doi.org/10.1007/s10815-022-02456-6
  24. Casarini L., Riccetti L., De Pascali F. et al. Estrogen Modulates Specific Life and Death Signals Induced by LH and hCG in Human Primary Granulosa Cells In Vitro // Int J. Mol. Sci. 2017. V. 18. № 5. 926. https://doi.org/10.3390/ijms18050926
  25. Casarini L., Riccetti L., De Pascali F. et al. Follicle-stimulating hormone potentiates the steroidogenic activity of chorionic gonadotropin and the anti-apoptotic activity of luteinizing hormone in human granulosa-lutein cells in vitro // Mol. Cell. Endocrinol. 2016. V. 422. P. 103–114. https://doi.org/10.1016/j.mce.2015.12.008
  26. Casarini L., Santi D., Brigante G., Simoni M. Two Hormones for One Receptor: Evolution, Biochemistry, Actions, and Pathophysiology of LH and hCG // Endocr. Rev. 2018. V. 39. № 5. P. 549–592. https://doi.org/10.1210/er.2018-00065
  27. Casarini L., Santi D., Simoni M., Potì F. ‘Spare’ Luteinizing Hormone Receptors: Facts and Fiction // Trends Endocrinol Metab. 2018. V. 29. № 4. P. 208–217. https://doi.org/10.1016/j.tem.2018.01.007
  28. Casarini L., Simoni M. Recent advances in understanding gonadotropin signaling // Fac Rev. 2021. V. 10. 41. https://doi.org/10.12703/r/10-41
  29. Chaturvedi M., Maharana J., Shukla A.K. Terminating G-Protein Coupling: Structural Snapshots of GPCR-β-Arrestin Complexes // Cell. 2020. V. 180. № 6. P. 1041–1043. https://doi.org/10.1016/j.cell.2020.02.047
  30. Chen C.Y., Chen C.R., Chen C.N. et al. Amphetamine-Decreased Progesterone and Estradiol Release in Rat Granulosa Cells: The Regulatory Role of cAMP- and Ca2+-Mediated Signaling Pathways // Biomedicines. 2021. V. 9. № 5. 493. https://doi.org/10.3390/biomedicines9050493
  31. Cole L.A. Proportion hyperglycosylated hCG: a new test for discriminating gestational trophoblastic diseases // Int J. Gynecol Cancer. 2014. V. 24. № 9. P. 1709–1714. https://doi.org/10.1097/IGC.0000000000000280
  32. Converse A., Liu Z., Patel J.C. et al. Oocyte quality is enhanced by hypoglycosylated FSH through increased cell-to-cell interaction during mouse follicle development // Development. 2023. V. 150. № 22. dev202170. https://doi.org/10.1242/dev.202170
  33. Costagliola S., Panneels V., Bonomi M. et al. Tyrosine sulfation is required for agonist recognition by glycoprotein hormone receptors // EMBO J. 2002. V. 21. № 4. P. 504–513. https://doi.org/10.1093/emboj/21.4.504
  34. Davis J.S., Kumar T.R., May J.V., Bousfield G.R. Naturally Occurring Follicle-Stimulating Hormone Glycosylation Variants // J. Glycomics Lipidomics. 2014. V. 4. № 1. e117. https://doi.org/10.4172/2153-0637.1000e117
  35. Derkach K.V., Dar’in D.V., Bakhtyukov A.A., Lobanov P.S., Shpakov A.O. In vitro and in vivo studies of functional activity of new low molecular weight agonists of the luteinizing hormone receptor // Biochemistry (Moscow). Suppl. Ser. A: Membrane and Cell Biology. 2016. V. 10. № 4. P. 294–300. https://doi.org/10.1134/S1990747816030132
  36. Derkach K.V., Dar’in D.V., Lobanov P.S., Shpakov A.O. Intratesticular, intraperitoneal, and oral administration of thienopyrimidine derivatives increases the testosterone level in male rats // Dokl. Biol. Sci. 2014. V. 459. № 1. P. 326–329. https://doi.org/10.1134/S0012496614060040
  37. Derkach K.V., Dar’in D.V., Shpakov A.O. Low-Molecular-Weight Ligands of Luteinizing Hormone with the Activity of Antagonists // Biochemistry (Moscow). Suppl. Ser. A: Membrane and Cell Biology. 2020. V. 14. № 3. P. 223–231. https://doi.org/10.1134/S1990747820030034
  38. Derkach K.V., Lebedev I.A., Morina I.Y. et al. Comparison of Steroidogenic and Ovulation-Inducing Effects of Orthosteric and Allosteric Agonists of Luteinizing Hormone/Chorionic Gonadotropin Receptor in Immature Female Rats // Int J. Mol Sci. 2023. V. 24. № 23. 16618. https://doi.org/10.3390/ijms242316618
  39. Derkach K.V., Legkodukh A.S., Dar’in D.V., Shpakov A.O. The stimulating effect of thienopyrimidines structurally similar to Org 43553 on adenylate cyclase activity in the testes and on testosterone production in male rats // Cell Tissue Biol. 2017. V. 11. № 1. P. 73–80. https://doi.org/10.1134/S199 0519X17010035
  40. Derkach K.V., Shpakova E.A., Shpakov A.O. Palmitoylated peptide 562-572 of luteinizing hormone receptor increases testosterone level in male rats // Bull Exp. Biol. Med. 2014. V. 158. № 2. P. 209–212. https://doi.org/10.1007/s10517-014-2724-5
  41. Duan J., Xu P., Cheng X. et al. Structures of full-length glycoprotein hormone receptor signalling complexes // Nature. 2021. V. 598. № 7882. P. 688–692. https://doi.org/10.1038/s41586-021-03924-2
  42. Erbel P.J., Haseley S.R., Kamerling J.P., Vliegenthart J.F. Studies on the relevance of the glycan at Asn-52 of the alpha-subunit of human chorionic gonadotropin in the alphabeta dimer // Biochem J. 2002. V. 364. Pt 2. P. 485–495. https://doi.org/10.1042/BJ20011482
  43. Eriksson K., Wide L. Gonadotropin Glycoforms Circulating in Women Using Progestins of the Levonorgestrel Family for Contraception // J. Endocr Soc. 2020. V. 4. № 11. https://doi.org/10.1210/jendso/bvaa128
  44. Fanis P., Neocleous V., Papapetrou I., Phylactou L.A., Skordis N. Gonadotropin-Releasing Hormone Receptor (GnRHR) and Hypogonadotropic Hypogonadism // Int J. Mol Sci. 2023. V. 24. № 21. https://doi.org/10.3390/ijms242115965
  45. Fares F. The role of O-linked and N-linked oligosaccharides on the structure-function of glycoprotein hormones: Development of agonists and antagonists // Biochim Biophys Acta. 2006. V. 1760. № 4. P. 560–567. https://doi.org/10.1016/j.bbagen.2005.12.022
  46. Faust B., Billesbølle C.B., Suomivuori C.M. et al. Autoantibody mimicry of hormone action at the thyrotropin receptor // Nature. 2022. V. 609. № 7928. P. 846–853. https://doi.org/10.1038/s41586-022-05159-1
  47. Feng X., Zhang M., Guan R., Segaloff D.L. Heterodimerization between the lutropin and follitropin receptors is associated with an attenuation of hormone-dependent signaling // Endocrinology. 2013. V. 154. № 10. P. 3925–3930. https://doi.org/10.1210/en.2013-1407
  48. Fernández-Tejada A., Vadola P.A., Danishefsky S.J. Chemical synthesis of the β-subunit of human luteinizing (hLH) and chorionic gonadotropin (hCG) glycoprotein hormones // J Am Chem Soc. 2014. V. 136. № 23. P. 8450–8458. https://doi.org/10.1021/ja503545r
  49. Fournier T. Human chorionic gonadotropin: Different glycoforms and biological activity depending on its source of production // Ann Endocrinol (Paris). 2016. V. 77. № 2. P. 75–81. https://doi.org/10.1016/j.ando.2016.04.012
  50. Fournier T., Guibourdenche J., Evain-Brion D. Review: hCGs: different sources of production, different glycoforms and functions // Placenta. 2015. V. 36. Suppl 1. P. 60–65. https://doi.org/10.1016/j.placenta.2015.02.002
  51. Fuxe K., Borroto-Escuela D.O. Heteroreceptor Complexes and their Allosteric Receptor-Receptor Interactions as a Novel Biological Principle for Integration of Communication in the CNS: Targets for Drug Development // Neuropsychopharmacology. 2016. V. 41. № 1. P. 380–382. https://doi.org/10.1038/npp.2015.244
  52. Gerrits M., Mannaerts B., Kramer H., Addo S., Hanssen R. First evidence of ovulation induced by oral LH agonists in healthy female volunteers of reproductive age // J. Clin Endocrinol Metab. 2013. V. 98. № 4. P. 1558–1566. https://doi.org/10.1210/jc.2012-3404
  53. Grzesik P., Kreuchwig A., Rutz C. et al. Differences in Signal Activation by LH and hCG are Mediated by the LH/CG Receptor’s Extracellular Hinge Region // Front Endocrinol (Lausanne). 2015. V. 6. 140. https://doi.org/10.3389/fendo.2015.00140
  54. Gudermann T., Birnbaumer M., Birnbaumer L. Evidence for dual coupling of the murine luteinizing hormone receptor to adenylyl cyclase and phosphoinositide breakdown and Ca2+ mobilization. Studies with the cloned murine luteinizing hormone receptor expressed in L cells // J. Biol. Chem. 1992. V. 267. № 7. P. 4479–4488.
  55. Gudermann T., Nichols C., Levy F.O., Birnbaumer M., Birnbaumer L. Ca2+ mobilization by the LH receptor expressed in Xenopus oocytes independent of 3’,5’-cyclic adenosine monophosphate formation: evidence for parallel activation of two signaling pathways // Mol. Endocrinol. 1992. V. 6. № 2. P. 272–278. https://doi.org/10.1210/mend.6.2.1314958
  56. Gupta C., Chapekar T., Chhabra Y. et al. Differential response to sustained stimulation by hCG & LH on goat ovarian granulosa cells // Indian J. Med. Res. 2012. V. 135. № 3. P. 331–340.
  57. He X., Duan J., Ji Y. et al. Hinge region mediates signal transmission of luteinizing hormone and chorionic gonadotropin receptor // Comput Struct Biotechnol J. 2022. V. 20. P. 6503–6511. https://doi.org/10.1016/j.csbj.2022.11.039
  58. Heitman L.H., Kleinau G., Brussee J., Krause G., Ijzerman A.P. Determination of different putative allosteric binding pockets at the lutropin receptor by using diverse drug-like low molecular weight ligands // Mol. Cell. Endocrinol. 2012. V. 351. № 2. P. 326–336. https://doi.org/10.1016/j.mce.2012.01.010
  59. Heitman L.H., Narlawar R., de Vries H. et al. Substituted terphenyl compounds as the first class of low molecular weight allosteric inhibitors of the luteinizing hormone receptor // J. Med. Chem. 2009. V. 52. № 7. P. 2036–2042. https://doi.org/10.1021/jm801561h
  60. Heitman L.H., Oosterom J., Bonger K.M. et al. [3H]Org 43553, the first low-molecular-weight agonistic and allosteric radioligand for the human luteinizing hormone receptor // Molecular pharmacoljgy. 2008. V. 73. P. 518–524. https://doi.org/10.1124/mol.107.039875
  61. Herrlich A., Kühn B., Grosse R. et al. Involvement of Gs and Gi proteins in dual coupling of the luteinizing hormone receptor to adenylyl cyclase and phospholipase C // J. Biol. Chem. 1996. V. 271. № 28. P. 16764–16772. https://doi.org/10.1074/jbc.271.28.16764
  62. Horvat R.D., Barisas B.G., Roess D.A. Luteinizing hormone receptors are self-associated in slowly diffusing complexes during receptor desensitization // Mol. Endocrinol. 2001. V. 15. № 4. P. 534–542. https://doi.org/10.1210/mend.15.4.0622
  63. Hoy J.J., Salinas Parra N., Park J. et al. Protein kinase A inhibitor proteins (PKIs) divert GPCR-Gαs-cAMP signaling toward EPAC and ERK activation and are involved in tumor growth // FASEB J. 2020. V. 34. № 10. P. 13900–13917. https://doi.org/10.1096/fj.202001515R
  64. Hunzicker-Dunn M., Barisas G., Song J., Roess D.A. Membrane organization of luteinizing hormone receptors differs between actively signaling and desensitized receptors // J. Biol. Chem. 2003, V. 278. № 44. P. 42744–42749. https://doi.org/10.1074/jbc.M306133200
  65. Jardón-Valadez E., Ulloa-Aguirre A. Tracking conformational transitions of the gonadotropin hormone receptors in a bilayer of (SDPC) poly-unsaturated lipids from all-atom molecular dynamics simulations // PLoS Comput Biol. 2024. V. 20. № 1. e1011415. https://doi.org/10.1371/journal.pcbi.1011415
  66. Jiang X., Fischer D., Chen X. et al. Evidence for Follicle-stimulating Hormone Receptor as a Functional Trimer // J. Biol. Chem. 2014. V. 289. № 20. P. 14273–14282. https://doi.org/10.1074/jbc.M114.549592
  67. Jiang X., Liu H., Chen X. et al. Structure of follicle-stimulating hormone in complex with the entire ectodomain of its receptor // Proc Natl Acad Sci U S A. 2012. V. 109. № 31. P. 12491–12496. https://doi.org/10.1073/pnas.1206643109
  68. Johnson G.P., Jonas K.C. Mechanistic insight into how gonadotropin hormone receptor complexes direct signaling // Biol. Reprod. 2020. V. 102. № 4. P. 773–783. https://doi.org/10.1093/biolre/ioz228
  69. Johnson G.P., Onabanjo C.G.A., Hardy K. et al. Follicle-Stimulating Hormone Glycosylation Variants Distinctly Modulate Pre-antral Follicle Growth and Survival // Endocrinology. 2022. V. 163. № 12. bqac161. https://doi.org/10.1210/endocr/bqac161
  70. Jonas K.C., Chen S., Virta M. et al. Temporal reprogramming of calcium signalling via crosstalk of gonadotrophin receptors that associate as functionally asymmetric heteromers // Sci Rep. 2018. V. 8. № 1. 2239. https://doi.org/10.1038/s41598-018-20722-5
  71. Jonas K.C., Fanelli F., Huhtaniemi I.T., Hanyaloglu A.C. Single molecule analysis of functionally asymmetric G protein-coupled receptor (GPCR) oligomers reveals diverse spatial and structural assemblies // J. Biol. Chem. 201 5. V. 290. № 7. P. 3875–3892. https://doi.org/10.1074/jbc.M114.622498
  72. Kara E., Dupuy L., Bouillon C., Casteret S., Maurel M.C. Modulation of Gonadotropins Activity by Antibodies // Front Endocrinol (Lausanne). 2019. V. 10. 15. https://doi.org/10.3389/fendo.2019.00015
  73. Koistinen H., Koel M., Peters M. et al. Hyperglycosylated hCG activates LH/hCG-receptor with lower activity than hCG // Mol. Cell. Endocrinol. 2019. V. 479. P. 103–109. https://doi.org/10.1016/j.mce.2018.09.006
  74. Lapthorn A.J., Harris D.C., Littlejohn A. et al. Crystal structure of human chorionic gonadotropin // Nature. 1994. V. 369. № 6480. P. 455–461. https://doi.org/10.1038/369455a0
  75. Lazzaretti C., Simoni M., Casarini L., Paradiso E. Allosteric modulation of gonadotropin receptors // Front Endocrinol (Lausanne). 2023. V. 14. 1179079. https://doi.org/ 10.3389/fendo.2023.1179079
  76. Lee S.Y., Byambaragchaa M., Choi S.H. et al. Roles of N-linked and O-linked glycosylation sites in the activity of equine chorionic gonadotropin in cells expressing rat luteinizing hormone/chorionic gonadotropin receptor and follicle-stimulating hormone receptor // BMC Biotechnol. 2021. V. 21. № 1. 52. https://doi.org/10.1186/s12896-021-00712-8
  77. Lei Y., Hagen G.M., Smith S.M. et al. Constitutively-active human LH receptors are self-associated and located in rafts // Mol. Cell Endocrinol. 2007. V. 260–262. P. 65–72. https://doi.org/10.1016/j.mce.2005.11.046
  78. Maharana J., Banerjee R., Yadav M.K., Sarma P., Shukla A.K. Emerging structural insights into GPCR-β-arrestin interaction and functional outcomes // Curr. Opin Struct. Biol. 2022. V. 75. https://doi.org/10.1016/j.sbi.2022.102406
  79. Manglik A., Kobilka B.K., Steyaert J. Nanobodies to Study G Protein-Coupled Receptor Structure and Function // Annu Rev Pharmacol Toxicol. 2017. V. 57. P. 19–37. https://doi.org/10.1146/annurev-pharmtox-010716-104710
  80. Mann O.N., Kong C.S., Lucas E.S. et al. Expression and function of the luteinizing hormone choriogonadotropin receptor in human endometrial stromal cells // Sci. Rep. 2022. V. 12. № 1. https://doi.org/10.1038/s41598-022-12495-9
  81. Manna P.R., Pakarinen P., El-Hefnawy T., Huhtaniemi I.T. Functional assessment of the calcium messenger system in cultured mouse Leydig tumor cells: Regulation of human chorionic gonadotropin-induced expression of the steroidogenic acute regulatory protein // Endocrinology. 1999. V. 140. № 4. P. 1739–1751.https://doi.org/10.1210/endo.140.4.6650
  82. Mazurkiewicz J.E., Herrick-Davis K,. Barroso M. et al. Single-molecule analyses of fully functional fluorescent protein-tagged follitropin receptor reveal homodimerization and specific heterodimerization with lutropin receptor // Biol. Reprod. 2015. V. 92. № 4. 100. https://doi.org/10.1095/biolreprod.114.125781
  83. Meher B.R., Dixit A., Bousfield G.R., Lushington G.H. Glycosylation Effects on FSH-FSHR Interaction Dynamics: A Case Study of Different FSH Glycoforms by Molecular Dynamics Simulations // PLoS One. 2015. V. 10. № 9. e0137897. https://doi.org/10.1371/journal.pone.0137897
  84. Mejia R., Waite C., Ascoli M. Activation of Gq/11 in the mouse corpus luteum is required for parturition // Mol. Endocrinol. 2015. V. 29. № 2. P. 238–246. https://doi.org/10.1210/me.2014-1324
  85. Mertens-Walker I., Bolitho C., Baxter R.C., Marsh D.J. Gonadotropin-induced ovarian cancer cell migration and proliferation require extracellular signal-regulated kinase 1/2 activation regulated by calcium and protein kinase C{delta} // Endocr Relat Cancer. 2010. V. 17. № 2. P. 335–349. https://doi.org/10.1677/ERC-09-0152
  86. Mishra S., Ling H., Grimm M. et al. Cardiac hypertrophy and heart failure development through Gq and CaM kinase II signaling // J. Cardiovasc Pharmacol. 2010. V. 56. № 6. P. 598–603. https://doi.org/10.1097/FJC.0b013e3181e1d263
  87. Misra U.K., Kaczowka S., Pizzo S.V. The cAMP-activated GTP exchange factor, Epac1 upregulates plasma membrane and nuclear Akt kinase activities in 8-CPT-2-O-Me-cAMP-stimulated macrophages: Gene silencing of the cAMP-activated GTP exchange Epac1 prevents 8-CPT-2-O-Me-cAMP activation of Akt activity in macrophages // Cell Signal. 2008. V. 20. № 8. P. 1459–1470. https://doi.org/10.1016/j.cellsig.2008.04.002
  88. Moore S., Jaeschke H., Kleinau G. et al. Evaluation of small-molecule modulators of the luteinizing hormone/choriogonadotropin and thyroid stimulating hormone receptors: structure-activity relationships and selective binding patterns // J. Med. Chem. 2006. V. 49. № 13. P. 3888–3896. https://doi.org/10.1021/jm060247s
  89. Mukherjee S., Gurevich V.V., Preninger A. et al. Aspartic acid 564 in the third cytoplasmic loop of the luteinizing hormone/choriogonadotropin receptor is crucial for phosphorylation-independent interaction with arrestin2 // J. Biol. Chem. 2002. V. 277. № 20. P. 17916–17927. https://doi.org/10.1074/jbc.M110479200
  90. Munier M., Ayoub M., Suteau V. et al. In vitro effects of the endocrine disruptor p,p’DDT on human choriogonadotropin/luteinizing hormone receptor signaling // Arch Toxicol. 2021. V. 95. № 5. P. 1671–1681. https://doi.org/10.1007/s00204-021-03007-1
  91. Nascimento D.R., Barbalho E.C., Gondim Barrozo L. et al. The mechanisms that control the preantral to early antral follicle transition and the strategies to have efficient culture systems to promote their growth in vitro // Zygote. 2023. V. 31. № 4. P. 305–315. https://doi.org/10.1017/S0967199423000254
  92. Nchourupouo K.W.T., Nde J., Ngouongo Y.J.W., Zekeng S.S., Fongang B. Evolutionary Couplings and Molecular Dynamic Simulations Highlight Details of GPCRs Heterodimers’ Interfaces // Molecules. 2023. V. 28. № 4. 1838. https://doi.org/10.3390/molecules28041838
  93. Newton C.L., Whay A.M., McArdle C.A. et al. Rescue of expression and signaling of human luteinizing hormone G protein-coupled receptor mutants with an allosterically binding small-molecule agonist // Proc. Natl. Acad. Sci USA. 2011. V. 108. P. 7172–7176. https://doi.org/10.1073/pnas.1015723108
  94. Núñez Miguel R., Sanders J., Furmaniak J., Rees Smith B. Glycosylation pattern analysis of glycoprotein hormones and their receptors // J. Mol. Endocrinol. 2017. V. 58. № 1. P. 25–41. https://doi.org/10.1530/JME-16-0169
  95. Nwabuobi C., Arlier S., Schatz F. et al. hCG: Biological Functions and Clinical Applications // Int J. Mol. Sci. 2017. V. 18. № 10. https://doi.org/10.3390/ijms18102037
  96. Oestreich E.A., Malik S., Goonasekera S.A. et al. Epac and phospholipase Cepsilon regulate Ca2+ release in the heart by activation of protein kinase Cepsilon and calcium-calmodulin kinase II // J. Biol. Chem. 2009. V. 284. № 3. P. 1514–1522. https://doi.org/10.1074/jbc.M806994200
  97. Olejnik B., Kratz E.M., Zimmer M., Ferens-Sieczkowska M. Glycoprotein fucosylation is increased in seminal plasma of subfertile men // Asian J. Androl. 2015. V. 17. № 2. P. 274–280. https://doi.org/10.4103/1008-682X.138187
  98. Osuga Y., Hayashi M., Kudo M. et al. Co-expression of defective luteinizing hormone receptor fragments partially reconstitutes ligand-induced signal generation // J. Biol. Chem. 1997. V. 272. № 40. P. 25006–25012. https://doi.org/10.1074/jbc.272.40.25006
  99. Pakarainen T., Zhang F.P., Nurmi L., Poutanen M., Huhtaniemi I. Knockout of luteinizing hormone receptor abolishes the effects of follicle-stimulating hormone on preovulatory maturation and ovulation of mouse graafian follicles // Mol. Endocrinol. 2005. V. 19. № 10. P. 2591–2602. https://doi.org/10.1210/me.2005-0075
  100. Petersen T.S., Kristensen S.G., Jeppesen J.V. et al. Distribution and function of 3’,5’-Cyclic-AMP phosphodiesterases in the human ovary // Mol. Cell. Endocrinol. 2015. V. 403. P. 10–20. https://doi.org/10.1016/j.mce.2015.01.004
  101. Puett D., Li Y., DeMars G., Angelova K., Fanelli F. A functional transmembrane complex: the luteinizing hormone receptor with bound ligand and G protein // Mol. Cell. Endocrinol. 2007. V. 260-262. P. 126–136. https://doi.org/10.1016/j.mce.2006.05.009
  102. Qiao J., Han B. Diseases caused by mutations in luteinizing hormone/chorionic gonadotropin receptor // Prog. Mol. Biol. Transl. Sci. 2019. V. 161. P. 69–89. https://doi.org/10.1016/bs.pmbts.2018.09.007
  103. Querat B. Unconventional Actions of Gly-coprotein Hormone Subunits: A Comprehensive Review // Front Endocrinol (Lausanne). 2021. V. 12. https://doi.org/10.3389/fendo.2021.731966
  104. Riccetti L., De Pascali F., Gilioli L. et al. Human LH and hCG stimulate differently the early signalling pathways but result in equal testosterone synthesis in mouse Leydig cells in vitro // Reprod. Biol. Endocrinol. 2017. V. 15. № 1–2. https://doi.org/10.1186/s12958-016-0224-3
  105. Riccetti L., Yvinec R., Klett D. et al. Human Luteinizing Hormone and Chorionic Gonadotropin Display Biased Agonism at the LH and LH/CG Receptors // Sci. Rep. 2017. V. 7. № 1. 940. https://doi.org/10.1038/s41598-017-01078-8
  106. Sairam M.R. Role of carbohydrates in glycoprotein hormone signal transduction // FASEB J. 1989. V. 3. № 8. P. 1915–926. https://doi.org/10.1096/fasebj.3.8.2542111
  107. Schulze A., Kleinau G, Neumann S. et al. The intramolecular agonist is obligate for activation of glycoprotein hormone receptors // FASEB J. 2020. V. 34. № 8. P. 11243–11256. https://doi.org/10.1096/fj.202000100R
  108. Segaloff D.L. Regulatory processes governing the cell surface expression of LH and FSH receptors // Subcell Biochem. 2012. V. 63. P. 113–129. https://doi.org/10.1007/978-94-007-4765-4_7
  109. Shimizu-Albergine M., Tsai L.C., Patrucco E., Beavo J.A. cAMP-specific phosphodiesterases 8A and 8B, essential regulators of Leydig cell steroidogenesis // Mol. Pharmacol. 2012. V. 81. № 4. P. 556–566. https://doi.org/10.1124/mol.111.076125
  110. Shpakov A.O. Allosteric Regulation of G-Protein-Coupled Receptors: From Diversity of Molecular Mechanisms to Multiple Allosteric Sites and Their Ligands // Int. J. Mol. Sci. 2023. V. 24. № 7. https://doi.org/10.3390/ijms24076187
  111. Shpakov A.O., Bakhtyukov A.A., Dar’in D.V., Derkach K.V. Pretreatment of rats with an allosteric luteinizing hormone receptor agonist augments chorionic gonadotropin-induced stimulation of testosterone production // J. Evol. Biochem. Physiol. 2019. V. 55. № 6. P. 510–514. https://doi.org/10.1134/S0022093019060115
  112. Shpakov A.O., Dar’in D.V., Derkach K.V., Lobanov P.S. The stimulating influence of thienopyrimidine compounds on the adenylyl cyclase systems in the rat testes // Dokl. Biochem. Biophys. 2014. V. 456. P. 104–107. https://doi.org/10.1134/S1607672914030065
  113. Shpakova E.A., Derkach K.V., Shpakov A.O. Biological activity of lipophilic derivatives of peptide 562–572 of rat luteinizing hormone receptor // Dokl. Biochem Biophys. 2013. V. 452. № 1. P. 248–250. https://doi.org/10.1134/S1607672913050116
  114. Shpakova E.A., Sorokoumov V.N., Akent’ev A.V. et al. The Relationship between Micelle Formation and Biological Activity of Peptide 562–572 of Luteinizing Hormone Receptor Modified with Decanoyl Radicals // Cell tissue Biol. 2017. V. 11. P. 227–233. https://doi.org/10.1134/S1990519X17030105
  115. Slosky L.M., Caron M.G., Barak L.S. Biased Allosteric Modulators: New Frontiers in GPCR Drug Discovery // Trends Pharmacol Sci. 2021. V. 42. № 4. P. 283–299. https://doi.org/10.1016/j.tips.2020.12.005
  116. Sposini S., Hanyaloglu A.C. Driving gonadotrophin hormone receptor signalling: the role of membrane trafficking // Reproduction. 2018. V. 156. № 6. P. R195–R208. https://doi.org/10.1530/REP-18-0423
  117. Stevenson H., Bartram S., Charalambides M.M. et al. Kisspeptin-neuron control of LH pulsatility and ovulation // Front Endocrinol (Lausanne). 2022. V. 13. 951938. https://doi.org/10.3389/fendo.2022.951938
  118. Tan Y., Xu P., Huang S. et al. Structural insights into the ligand binding and Gi coupling of serotonin receptor 5-HT5A // Cell Discov. 2022. V. 8. № 1. 50. https://doi.org/10.1038/s41421-022-00412-3
  119. Toulis K.A., Goulis D.G., Venetis C.A. et al. Thyroid autoimmunity and miscarriages: the corpus luteum hypothesis // Med. Hypotheses. 2009. V. 73. № 6. P. 1060–1062. https://doi.org/10.1016/j.mehy.2009.05.012
  120. Trehan A., Rotgers E., Coffey E.T., Huhtaniemi I., Rivero-Müller A. CANDLES, an assay for monitoring GPCR induced cAMP generation in cell cultures // Cell Commun Signal. 2014. V. 12. https://doi.org/10.1186/s12964-014-0070-x
  121. Van de Lagemaat R., Raafs B.C., van Koppen C. et al. Prevention of the onset of ovarian hyperstimulation syndrome (OHSS) in the rat after ovulation induction with a low molecular weight agonist of the LH receptor compared with hCG and rec-LH // Endocrinology. 2011. V. 152. № 11. P. 4350–4357. https://doi.org/10.1210/en.2011-1077
  122. Van de Lagemaat R., Timmers C.M., Kelder J. et al. Induction of ovulation by a potent, orally active, low molecular weight agonist (Org 43553) of the luteinizing hormone receptor // Hum Reprod. 2009. V. 24. № 3. P. 640–648. https://doi.org/10.1093/humrep/den412
  123. Van de Lagemaat R., van Koppen C.J., Krajnc-Franken M.A. et al. Contraception by induction of luteinized unruptured follicles with short-acting low molecular weight FSH receptor agonists in female animal models // Reproduction. 2011. V. 142. № 6. P. 893–905. doi: 10.1530/REP-11-0234
  124. Vander Ark A., Cao J., Li X. TGF-β receptors: In and beyond TGF-β signaling // Cell Signal. 2018. V. 52. P. 112–120. https://doi.org/10.1016/j.cellsig.2018.09.002
  125. Van Koppen C.J., Zaman G.J., Timmers C.M. et al. A signaling-selective, nanomolar potent allosteric low molecular weight agonist for the human luteinizing hormone receptor // Naunyn Schmiedebergs Arch Pharmacol. 2008. V. 378. № 5. P. 503–514. https://doi.org/10.1007/s00210-008-0318-3
  126. Van Petegem F. Ryanodine receptors: allosteric ion channel giants // J. Mol. Biol. 2015. V. 427. № 1. P. 31–53. https://doi.org/10.1016/j.jmb.2014.08.004
  127. Van Straten N.C., Schoonus-Gerritsma G.G., van Someren R.G. et al. The first orally active low molecular weight agonists for the LH receptor: thienopyr(im)idines with therapeutic potential for ovulation induction. Chembiochem. 2002. V. 3. № 10. P. 1023–1026. https://doi.org/10.1002/1439-7633(20021004)3:10<1023::AID CBIC1023>3.0.CO;2-9
  128. Wang X.N., Greenwald G.S. Human chorionic gonadotropin or human recombinant follicle-stimulating hormone (FSH)-induced ovulation and subsequent fertilization and early embryo development in hypophysectomized FSH-primed mice // Endocrinology. 1993. V. 132. № 5. P. 2009–2016. https://doi.org/10.1210/endo.132.5.8477652
  129. Wehbi V., Decourtye J., Piketty V. et al. Selective modulation of follicle-stimulating hormone signaling pathways with enhancing equine chorionic gonadotropin/antibody immune complexes // Endocrinology. 2010. V. 151. № 6. P. 2788–2799. https://doi.org/10.1210/en.2009-0892
  130. Wehbi V., Tranchant T., Durand G. et al. Partially deglycosylated equine LH preferentially activates beta-arrestin-dependent signaling at the follicle-stimulating hormone receptor // Mol. Endocrinol. 2010. V. 24. № 3. P. 561–573. https://doi.org/10.1210/me.2009-0347
  131. Wess J., Oteng A.B., Rivera-Gonzalez O., Gurevich E.V., Gurevich V.V. β-Arrestins: Structure, Function, Physiology, and Pharmacological Perspectives // Pharmacol Rev. 2023. V. 75. № 5. P. 854–884. https://doi.org/ 10.1124/pharmrev.121.000302
  132. Wide L., Eriksson K. Molecular size and charge as dimensions to identify and characterize circulating glycoforms of human FSH, LH and TSH // Ups. J. Med. Sci. 2017. V. 122. № 4. P. 217–223. https://doi.org/10.1080/03009734.2017. 1412373
  133. Wide L., Eriksson K. Low-glycosylated forms of both FSH and LH play major roles in the natural ovarian stimulation // Ups. J. Med. Sci. 2018. V. 123. № 2. P. 100–108. https://doi.org/10.1080/03009734.2018.1467983
  134. Wide L., Eriksson K., Sluss P.M., Hall J.E. Determination of Half-lives of Circulating FSH and LH Glycoforms in Women During GnRH Receptor Blockade // J. Clin Endocrinol Metab. 2022. V. 107. № 10. e4058–e4062. https://doi.org/10.1210/clinem/dgac434
  135. Wolf-Ringwall A.L., Winter P.W., Roess D.A., George Barisas B. Luteinizing hormone receptors are confined in mesoscale plasma membrane microdomains throughout recovery from receptor desensitization // Cell Biochem Biophys. 2014. V. 68. № 3. P. 561–569. https://doi.org/10.1007/s12013-013-9738-x
  136. Wortmann L., Lindenthal B., Muhn P. et al. Discovery of BAY-298 and BAY-899: Tetrahydro-1,6-naphthyridine-Based, Potent, and Selective Antagonists of the Luteinizing Hormone Receptor Which Reduce Sex Hormone Levels in Vivo // J. Med. Chem. 2019. V. 62. № 22. P. 10321–10341. https://doi.org/10.1021/acs.jmedchem.9b01382
  137. Wu A., Salom D., Hong J.D. et al. Structural basis for the allosteric modulation of rhodopsin by nanobody binding to its extracellular domain // Nat Commun. 2023. V. 14. № 1. 5209. https://doi.org/10.1038/s41467-023-40911-9.
  138. Wu H., Lustbader J.W., Liu Y., Canfield R.E., Hendrickson W.A. Structure of human chorionic gonadotropin at 2.6 A resolution from MAD analysis of the selenomethionyl protein // Structure. 1994. V. 2. № 6. P. 545–558. https://doi.org/10.1016/s0969-2126(00)00054-x
  139. Zariñán T., Butnev V.Y., Gutiérrez-Sagal R. et al. In Vitro Impact of FSH Glycosylation Variants on FSH Receptor-stimulated Signal Transduction and Functional Selectivity // J. Endocr. Soc. 2020. V. 4. № 5. https://doi.org/10.1210/jendso/bvaa019
  140. Zenzmaier C., Gerth R., Gruschwitz M. et al. Decreased levels of genuine large free hCG alpha in men presenting with abnormal semen analysis // Reprod. Biol. Endocrinol. 2011. V. 9. https://doi.org/10.1186/1477-7827-9-114
  141. Zhang H., Kong Q., Wang J., Jiang Y., Hua H. Complex roles of cAMP-PKA-CREB signaling in cancer // Exp. Hematol. Oncol. 2020. V. 9. № 1. 32. https://doi.org/10.1186/s40164-020-00191-1
  142. Zhang L., Shi G. Gq-Coupled Receptors in Autoimmunity // J. Immunol. Res. 2016. V. 2016. https://doi.org/10.1155/2016/3969023
  143. Zhang M., Chen T., Lu X. et al. G protein-coupled receptors (GPCRs): Advances in structures, mechanisms, and drug discovery // Signal Transduct Target Ther. 2024. V. 9. № 1. https://doi.org/10.1038/s41392-024-01803-6
  144. Zheng M., Cadenas J., Pors S.E. et al. Reducing 3D Hydrogel Stiffness, Addition of Oestradiol in a Physiological Concentration and Increasing FSH Concentration Improve In Vitro Growth of Murine Preantral Follicles // Int. J. Mol. Sci. 2023. V. 24. № 15. 12499. https://doi.org/10.3390/ijms241512499
  145. Zhu C., Lan X., Wei Z., Yu J., Zhang J. Allosteric modulation of G protein-coupled receptors as a novel therapeutic strategy in neuropathic pain // Acta Pharm Sin B. 2024. V. 14. № 1. P. 67–86. https://doi.org/10.1016/j.apsb.2023.07.020
  146. Zhu X., Gilbert S., Birnbaumer M., Birnbaumer L. Dual signaling potential is common among Gs-coupled receptors and dependent on receptor density // Mol. Pharmacol. 1994. V. 46. № 3. P. 460–469.
  147. Zoenen M., Urizar E., Swillens S., Vassart G., Costagliola S. Evidence for activity-regulated hormone-binding cooperativity across glycoprotein hormone receptor homomers // Nat Commun. 2012. V. 3. 1007. https://doi.org/10.1038/ncomms1991

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. N- and O-glycosylation of subunits of human LH and hCG, as well as FSH presented for comparison. For α-LH, α-FSH and α-CG, glycoforms of α-subunits characteristic of LH, FSH and placental hCG molecules are presented. Sites for N-glycosylation are shown in all subunits, and in β-subunits of hCG, sites for O-glycosylation also localized in the C-terminal part of the molecules are shown. The most typical structures of N-glycans characteristic of the presented gonadotropins are shown. In the α- and β-subunits of LH and hCG, weakly branched (hybrid and biantennary) N-glycans predominate, with LH secreted by the pituitary gland containing more sulfated N-acetylgalactosamine (GalNAc), and in hCG secreted by the fetus and placenta, sialic acid residues predominate. In the α- and β-subunits of FSH, there is a significant number of more branched (three- and four-antennary) N-glycans enriched in sialic acid. Terminal sialic acid residues are shown as open squares, terminal sulfated GalNAc residues are shown as filled circles.

Жүктеу (136KB)
3. Fig. 2. Signaling pathways realized through LH/hCG-R, as well as endosomal signaling carried out with the participation of gonadotropin-bound LH/hCG-R. Designations: LH/hCG-R – LH and hCG receptor; AC – adenylate cyclase; cAMP – 3’-5’-cyclic adenosine monophosphate; PKA – protein kinase A; PDE4,7,8 – cAMP-activated phosphodiesterases types 4, 7 and 8; Epac1/2 – exchange proteins types 1 and 2, activated by cyclic AMP; Gs, Gi, Gq/11 – αβγ-heterotrimeric proteins that stimulate (Gs) or inhibit (Gi) AC and activate calcium signaling (Gq/11); β-App – β-arrestin; ERK1/2 – extracellular signal-regulated kinases types 1 and 2; PLCβ – phosphoinositide-specific phospholipase Cβ; DAG – diacylglycerol; IP3 – inositol-3,4,5-triphosphate; [Ca2+]i – intracellular Ca2+ concentration; PKC – phorbol-sensitive protein kinase C isoforms.

Жүктеу (265KB)

© Russian Academy of Sciences, 2024