Multiple mechanisms of allosteric regulation of the luteninizing hormone receptor
- Авторлар: Shpakov A.O.1, Derkach K.V.1
-
Мекемелер:
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
- Шығарылым: Том 55, № 4 (2024)
- Беттер: 45-74
- Бөлім: Articles
- URL: https://permmedjournal.ru/0301-1798/article/view/676182
- DOI: https://doi.org/10.31857/S0301179824040031
- EDN: https://elibrary.ru/AHEJYS
- ID: 676182
Дәйексөз келтіру
Аннотация
The regulatory effects of luteinizing hormone (LH) and chorionic gonadotropin (CG) are realized through the activation of the G-protein coupled LH/CG receptor (LH/CG-R). The result of this is the activation of various types of G proteins, which leads to stimulation (Gs) or inhibition (Gi) of the cAMP-dependent pathway and stimulation of calcium signaling (Gq/11, Gi), and the recruitment of β-arrestins, which prevent G protein signaling through receptor internalization and downregulation, but can also activate the mitogen-activated protein kinase cascade. Despite a certain similarity in the effects of LH and CG, there are differences between them both in efficiency and in the pattern of regulation of LH/CG-R. This is a consequence of differences in the affinity of LH and CG to the orthosteric site of the receptor, as well as differences at the level of allosteric regulation of the receptor, which is due to the presence of a C-terminal extension in the β-subunit of CG, including sites for O-glycosylation, and the variability of N-glycosylation of α- and β-subunits of gonadotropins. Moreover, the number of N-glycans, the degree of their branching and charge differ, which leads to different efficiency of activation of intracellular cascades, affecting the physiological response of the reproductive system to gonadotropins. Of great importance is the formation of homodi(oligo)meric complexes of LH/CG-R and its heterocomplexes with the follicle-stimulating hormone receptor, where protomers allosterically influence the efficiency of LH/CG-R activation and the bias of signal transduction. Taking into account the large number of allosteric sites in LH/CG-R, the development of low-molecular allosteric regulators is underway, including agonists based on thieno[2,3-d]-pyrimidine and peptides derived from the cytoplasmic loops of LH/CG-R. These regulators can become prototypes of drugs for correcting the functions of the reproductive system. This review is devoted to the analysis of data on the similarities and differences in the signaling and physiological effects of gonadotropins with LH activity, the role of allosteric mechanisms in this, and the prospects for creating allosteric regulators of LH/CG-R.
Толық мәтін

Авторлар туралы
A. Shpakov
Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: alex_shpakov@list.ru
Ресей, St. Petersburg, 194223
K. Derkach
Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
Email: derkatch_k@list.ru
Ресей, St. Petersburg, 194223
Әдебиет тізімі
- Agwuegbo U.T., Colley E., Albert A.P. et al. Differential FSH Glycosylation Modulates FSHR Oligomerization and Subsequent cAMP Signaling // Front Endocrinol. (Lausanne). 2021. V. 12. 765727. https://doi.org/10.3389/fendo.2021.765727
- Arey B.J. Allosteric modulators of glycoprotein hormone receptors: Discovery and therapeutic potential // Endocrine. 2008. V. 34. № 1–3. P. 1–10. https://doi.org/10.1007/s12020-008-9098-2
- Arnhold I.J., Lofrano-Porto A., Latronico A.C. Inactivating mutations of luteinizing hormone beta-subunit or luteinizing hormone receptor cause oligo-amenorrhea and infertility in women // Horm. Res. 2009. V. 71. № 2. P. 75–82. https://doi.org/10.1159/000183895
- Ayoub M.A., Landomiel F., Gallay N. et al. Assessing Gonadotropin Receptor Function by Resonance Energy Transfer-Based Assays // Front Endocrinol. (Lausanne). 2015. V. 6. 130. https://doi.org/10.3389/fendo.2015.00130
- Ayoub M.A., Yvinec R., Jégot G. et al. Profiling of FSHR negative allosteric modulators on LH/CGR reveals biased antagonism with implications in steroidogenesis // Mol. Cell. Endocrinol. 2016. V. 436. P. 10–22. https://doi.org/10.1016/j.mce.2016.07.013
- Bakhtyukov A.A., Derkach K.V., Dar’in D.V., Shpakov A.O. Thienopyrimidine derivatives specifically activate testicular steroidogenesis but do not affect thyroid functions // J. Evol. Biochem. Physiol. 2019. V. 55. № 1. P. 30–39. https://doi.org/10.1134/S0022093019010046
- Bakhtyukov A.A., Derkach K.V., Dar’in D.V., Stepochkina A.M., Shpakov A.O. A low molecular weight agonist of the luteinizing hormone receptor stimulates adenylyl cyclase in the testicular membranes and steroidogenesis in the testes of rats with type 1 diabetes // Biochemistry (Moscow). Suppl. Series A: Membrane and Cell Biology. 2019. V. 13. № 4. P. 301–309. https://doi.org/10.1134/S1990747819040032
- Bakhtyukov A.A., Derkach K.V., Gureev M.A. et al. Comparative Study of the Steroidogenic Effects of Human Chorionic Gonadotropin and Thieno[2,3-D]pyrimidine-Based Allosteric Agonist of Luteinizing Hormone Receptor in Young Adult, Aging and Diabetic Male Rats // Int. J. Mol. Sci. 2020. V. 21. № 20. 7493. https://doi.org/10.3390/ijms21207493
- Bakhtyukov A.A., Derkach K.V., Romanova I.V. et al. Effect of low-molecular-weight allosteric agonists of the luteinizing hormone receptor on its expression and distribution in rat testes // J. Evol. Biochem. Physiol. 2021. V. 57. № 2. P. 208–220. https://doi.org/10.1134/S0022093021020034
- Bakhtyukov A.A., Derkach K.V., Sorokoumov V.N. et al. The Effects of Separate and Combined Treatment of Male Rats with Type 2 Diabetes with Metformin and Orthosteric and Allosteric Agonists of Luteinizing Hormone Receptor on Steroidogenesis and Spermatogenesis // Int. J. Mol. Sci. 2021. V. 23. № 1. 198. https://doi.org/10.3390/ijms23010198
- Berndt S., Blacher S., Munaut C. et al. Hyperglycosylated human chorionic gonadotropin stimulates angiogenesis through TGF-β receptor activation // FASEB J. 2013. V. 27. № 4. P. 1309–1321. https://doi.org/10.1096/fj.12-213686
- Birken S. Specific measurement of o-linked core 2 sugar-containing isoforms of hyperglycosylated human chorionic gonadotropin by antibody b152 // Tumour. Biol. 2005. V. 26. № 3. P. 131–141. https://doi.org/10.1159/000086484
- Blithe D.L. N-linked oligosaccharides on free alpha interfere with its ability to combine with human chorionic gonadotropin-beta subunit // J. Biol. Chem. 1990. V. 265. № 35. P. 21951–21956.
- Bousfield G.R., Butnev V.Y., Butnev V.Y. Identification of twelve O-glycosylation sites in equine chorionic gonadotropin beta and equine luteinizing hormone ss by solid-phase Edman degradation // Biol. Reprod. 2001. V. 64. № 1. P. 136–147. https://doi.org/10.1095/biolreprod64.1.136
- Bousfield G.R., Dias J.A. Synthesis and secretion of gonadotropins including structure-function correlates // Rev. Endocr. Metab. Disord. 2011. V. 12. № 4. P. 289–302. https://doi.org/10.1007/s11154-011-9191-3
- Bradbury F.A., Menon K.M. Evidence that constitutively active luteinizing hormone/human chorionic gonadotropin receptors are rapidly internalized // Biochemistry. 1999. V. 38. № 27. P. 8703–8712. https://doi.org/10.1021/bi990169t
- Brüser A., Schulz A., Rothemund S. et al. The Activation Mechanism of Glycoprotein Hormone Receptors with Implications in the Cause and Therapy of Endocrine Diseases // J. Biol. Chem. 2016. V. 291. № 2. P. 508–520. https://doi.org/10.1074/jbc.M115.701102
- Butnev V.Y., Butnev V.Y., May J.V. et al. Production, purification, and characterization of recombinant hFSH glycoforms for functional studies // Mol. Cell. Endocrinol. 2015. V. 405. P. 42–51. https://doi.org/10.1016/j.mce.2015.01.026
- Butnev V.Y., May J.V., Brown A.R. et al. Human FSH Glycoform α-Subunit Asparagine52 Glycans: Major Glycan Structural Consistency, Minor Glycan Variation in Abundance // Front Endocrinol (Lausanne). 2022. V. 13. 767661. https://doi.org/10.3389/fendo.2022.767661
- Butnev V.Y., Singh V., Nguyen V.T., Bousfield G.R. Truncated equine LH beta and asparagine(56)-deglycosylated equine LH alpha combine to produce a potent FSH antagonist // J. Endocrinol. 2002. V. 172. № 3. P. 545–555. https://doi.org/10.1677/joe.0.1720545
- Caron P., Broussaud S., Galano-Frutos J.J., Sancho J., Savagner F. New variant (Val597Ile) in transmembrane region of the TSH receptor with human chorionic gonadotropin hypersensitivity in familial gestational hyperthyroidism // Clin Endocrinol (Oxf). 2020. V. 93. № 3. P. 339–345. https://doi.org/10.1111/cen.14215
- Casarini L., Lispi M., Longobardi S. et al. LH and hCG action on the same receptor results in quantitatively and qualitatively different intracellular signaling // PLoS One. 2012. V. 7. № 10. e46682. https://doi.org/10.1371/journal.pone.0046682
- Casarini L., Paradiso E., Lazzaretti C. et al. Regulation of antral follicular growth by an interplay between gonadotropins and their receptors // J. Assist Reprod Genet. 2022. V. 39. № 4. P. 893–904. https://doi.org/10.1007/s10815-022-02456-6
- Casarini L., Riccetti L., De Pascali F. et al. Estrogen Modulates Specific Life and Death Signals Induced by LH and hCG in Human Primary Granulosa Cells In Vitro // Int J. Mol. Sci. 2017. V. 18. № 5. 926. https://doi.org/10.3390/ijms18050926
- Casarini L., Riccetti L., De Pascali F. et al. Follicle-stimulating hormone potentiates the steroidogenic activity of chorionic gonadotropin and the anti-apoptotic activity of luteinizing hormone in human granulosa-lutein cells in vitro // Mol. Cell. Endocrinol. 2016. V. 422. P. 103–114. https://doi.org/10.1016/j.mce.2015.12.008
- Casarini L., Santi D., Brigante G., Simoni M. Two Hormones for One Receptor: Evolution, Biochemistry, Actions, and Pathophysiology of LH and hCG // Endocr. Rev. 2018. V. 39. № 5. P. 549–592. https://doi.org/10.1210/er.2018-00065
- Casarini L., Santi D., Simoni M., Potì F. ‘Spare’ Luteinizing Hormone Receptors: Facts and Fiction // Trends Endocrinol Metab. 2018. V. 29. № 4. P. 208–217. https://doi.org/10.1016/j.tem.2018.01.007
- Casarini L., Simoni M. Recent advances in understanding gonadotropin signaling // Fac Rev. 2021. V. 10. 41. https://doi.org/10.12703/r/10-41
- Chaturvedi M., Maharana J., Shukla A.K. Terminating G-Protein Coupling: Structural Snapshots of GPCR-β-Arrestin Complexes // Cell. 2020. V. 180. № 6. P. 1041–1043. https://doi.org/10.1016/j.cell.2020.02.047
- Chen C.Y., Chen C.R., Chen C.N. et al. Amphetamine-Decreased Progesterone and Estradiol Release in Rat Granulosa Cells: The Regulatory Role of cAMP- and Ca2+-Mediated Signaling Pathways // Biomedicines. 2021. V. 9. № 5. 493. https://doi.org/10.3390/biomedicines9050493
- Cole L.A. Proportion hyperglycosylated hCG: a new test for discriminating gestational trophoblastic diseases // Int J. Gynecol Cancer. 2014. V. 24. № 9. P. 1709–1714. https://doi.org/10.1097/IGC.0000000000000280
- Converse A., Liu Z., Patel J.C. et al. Oocyte quality is enhanced by hypoglycosylated FSH through increased cell-to-cell interaction during mouse follicle development // Development. 2023. V. 150. № 22. dev202170. https://doi.org/10.1242/dev.202170
- Costagliola S., Panneels V., Bonomi M. et al. Tyrosine sulfation is required for agonist recognition by glycoprotein hormone receptors // EMBO J. 2002. V. 21. № 4. P. 504–513. https://doi.org/10.1093/emboj/21.4.504
- Davis J.S., Kumar T.R., May J.V., Bousfield G.R. Naturally Occurring Follicle-Stimulating Hormone Glycosylation Variants // J. Glycomics Lipidomics. 2014. V. 4. № 1. e117. https://doi.org/10.4172/2153-0637.1000e117
- Derkach K.V., Dar’in D.V., Bakhtyukov A.A., Lobanov P.S., Shpakov A.O. In vitro and in vivo studies of functional activity of new low molecular weight agonists of the luteinizing hormone receptor // Biochemistry (Moscow). Suppl. Ser. A: Membrane and Cell Biology. 2016. V. 10. № 4. P. 294–300. https://doi.org/10.1134/S1990747816030132
- Derkach K.V., Dar’in D.V., Lobanov P.S., Shpakov A.O. Intratesticular, intraperitoneal, and oral administration of thienopyrimidine derivatives increases the testosterone level in male rats // Dokl. Biol. Sci. 2014. V. 459. № 1. P. 326–329. https://doi.org/10.1134/S0012496614060040
- Derkach K.V., Dar’in D.V., Shpakov A.O. Low-Molecular-Weight Ligands of Luteinizing Hormone with the Activity of Antagonists // Biochemistry (Moscow). Suppl. Ser. A: Membrane and Cell Biology. 2020. V. 14. № 3. P. 223–231. https://doi.org/10.1134/S1990747820030034
- Derkach K.V., Lebedev I.A., Morina I.Y. et al. Comparison of Steroidogenic and Ovulation-Inducing Effects of Orthosteric and Allosteric Agonists of Luteinizing Hormone/Chorionic Gonadotropin Receptor in Immature Female Rats // Int J. Mol Sci. 2023. V. 24. № 23. 16618. https://doi.org/10.3390/ijms242316618
- Derkach K.V., Legkodukh A.S., Dar’in D.V., Shpakov A.O. The stimulating effect of thienopyrimidines structurally similar to Org 43553 on adenylate cyclase activity in the testes and on testosterone production in male rats // Cell Tissue Biol. 2017. V. 11. № 1. P. 73–80. https://doi.org/10.1134/S199 0519X17010035
- Derkach K.V., Shpakova E.A., Shpakov A.O. Palmitoylated peptide 562-572 of luteinizing hormone receptor increases testosterone level in male rats // Bull Exp. Biol. Med. 2014. V. 158. № 2. P. 209–212. https://doi.org/10.1007/s10517-014-2724-5
- Duan J., Xu P., Cheng X. et al. Structures of full-length glycoprotein hormone receptor signalling complexes // Nature. 2021. V. 598. № 7882. P. 688–692. https://doi.org/10.1038/s41586-021-03924-2
- Erbel P.J., Haseley S.R., Kamerling J.P., Vliegenthart J.F. Studies on the relevance of the glycan at Asn-52 of the alpha-subunit of human chorionic gonadotropin in the alphabeta dimer // Biochem J. 2002. V. 364. Pt 2. P. 485–495. https://doi.org/10.1042/BJ20011482
- Eriksson K., Wide L. Gonadotropin Glycoforms Circulating in Women Using Progestins of the Levonorgestrel Family for Contraception // J. Endocr Soc. 2020. V. 4. № 11. https://doi.org/10.1210/jendso/bvaa128
- Fanis P., Neocleous V., Papapetrou I., Phylactou L.A., Skordis N. Gonadotropin-Releasing Hormone Receptor (GnRHR) and Hypogonadotropic Hypogonadism // Int J. Mol Sci. 2023. V. 24. № 21. https://doi.org/10.3390/ijms242115965
- Fares F. The role of O-linked and N-linked oligosaccharides on the structure-function of glycoprotein hormones: Development of agonists and antagonists // Biochim Biophys Acta. 2006. V. 1760. № 4. P. 560–567. https://doi.org/10.1016/j.bbagen.2005.12.022
- Faust B., Billesbølle C.B., Suomivuori C.M. et al. Autoantibody mimicry of hormone action at the thyrotropin receptor // Nature. 2022. V. 609. № 7928. P. 846–853. https://doi.org/10.1038/s41586-022-05159-1
- Feng X., Zhang M., Guan R., Segaloff D.L. Heterodimerization between the lutropin and follitropin receptors is associated with an attenuation of hormone-dependent signaling // Endocrinology. 2013. V. 154. № 10. P. 3925–3930. https://doi.org/10.1210/en.2013-1407
- Fernández-Tejada A., Vadola P.A., Danishefsky S.J. Chemical synthesis of the β-subunit of human luteinizing (hLH) and chorionic gonadotropin (hCG) glycoprotein hormones // J Am Chem Soc. 2014. V. 136. № 23. P. 8450–8458. https://doi.org/10.1021/ja503545r
- Fournier T. Human chorionic gonadotropin: Different glycoforms and biological activity depending on its source of production // Ann Endocrinol (Paris). 2016. V. 77. № 2. P. 75–81. https://doi.org/10.1016/j.ando.2016.04.012
- Fournier T., Guibourdenche J., Evain-Brion D. Review: hCGs: different sources of production, different glycoforms and functions // Placenta. 2015. V. 36. Suppl 1. P. 60–65. https://doi.org/10.1016/j.placenta.2015.02.002
- Fuxe K., Borroto-Escuela D.O. Heteroreceptor Complexes and their Allosteric Receptor-Receptor Interactions as a Novel Biological Principle for Integration of Communication in the CNS: Targets for Drug Development // Neuropsychopharmacology. 2016. V. 41. № 1. P. 380–382. https://doi.org/10.1038/npp.2015.244
- Gerrits M., Mannaerts B., Kramer H., Addo S., Hanssen R. First evidence of ovulation induced by oral LH agonists in healthy female volunteers of reproductive age // J. Clin Endocrinol Metab. 2013. V. 98. № 4. P. 1558–1566. https://doi.org/10.1210/jc.2012-3404
- Grzesik P., Kreuchwig A., Rutz C. et al. Differences in Signal Activation by LH and hCG are Mediated by the LH/CG Receptor’s Extracellular Hinge Region // Front Endocrinol (Lausanne). 2015. V. 6. 140. https://doi.org/10.3389/fendo.2015.00140
- Gudermann T., Birnbaumer M., Birnbaumer L. Evidence for dual coupling of the murine luteinizing hormone receptor to adenylyl cyclase and phosphoinositide breakdown and Ca2+ mobilization. Studies with the cloned murine luteinizing hormone receptor expressed in L cells // J. Biol. Chem. 1992. V. 267. № 7. P. 4479–4488.
- Gudermann T., Nichols C., Levy F.O., Birnbaumer M., Birnbaumer L. Ca2+ mobilization by the LH receptor expressed in Xenopus oocytes independent of 3’,5’-cyclic adenosine monophosphate formation: evidence for parallel activation of two signaling pathways // Mol. Endocrinol. 1992. V. 6. № 2. P. 272–278. https://doi.org/10.1210/mend.6.2.1314958
- Gupta C., Chapekar T., Chhabra Y. et al. Differential response to sustained stimulation by hCG & LH on goat ovarian granulosa cells // Indian J. Med. Res. 2012. V. 135. № 3. P. 331–340.
- He X., Duan J., Ji Y. et al. Hinge region mediates signal transmission of luteinizing hormone and chorionic gonadotropin receptor // Comput Struct Biotechnol J. 2022. V. 20. P. 6503–6511. https://doi.org/10.1016/j.csbj.2022.11.039
- Heitman L.H., Kleinau G., Brussee J., Krause G., Ijzerman A.P. Determination of different putative allosteric binding pockets at the lutropin receptor by using diverse drug-like low molecular weight ligands // Mol. Cell. Endocrinol. 2012. V. 351. № 2. P. 326–336. https://doi.org/10.1016/j.mce.2012.01.010
- Heitman L.H., Narlawar R., de Vries H. et al. Substituted terphenyl compounds as the first class of low molecular weight allosteric inhibitors of the luteinizing hormone receptor // J. Med. Chem. 2009. V. 52. № 7. P. 2036–2042. https://doi.org/10.1021/jm801561h
- Heitman L.H., Oosterom J., Bonger K.M. et al. [3H]Org 43553, the first low-molecular-weight agonistic and allosteric radioligand for the human luteinizing hormone receptor // Molecular pharmacoljgy. 2008. V. 73. P. 518–524. https://doi.org/10.1124/mol.107.039875
- Herrlich A., Kühn B., Grosse R. et al. Involvement of Gs and Gi proteins in dual coupling of the luteinizing hormone receptor to adenylyl cyclase and phospholipase C // J. Biol. Chem. 1996. V. 271. № 28. P. 16764–16772. https://doi.org/10.1074/jbc.271.28.16764
- Horvat R.D., Barisas B.G., Roess D.A. Luteinizing hormone receptors are self-associated in slowly diffusing complexes during receptor desensitization // Mol. Endocrinol. 2001. V. 15. № 4. P. 534–542. https://doi.org/10.1210/mend.15.4.0622
- Hoy J.J., Salinas Parra N., Park J. et al. Protein kinase A inhibitor proteins (PKIs) divert GPCR-Gαs-cAMP signaling toward EPAC and ERK activation and are involved in tumor growth // FASEB J. 2020. V. 34. № 10. P. 13900–13917. https://doi.org/10.1096/fj.202001515R
- Hunzicker-Dunn M., Barisas G., Song J., Roess D.A. Membrane organization of luteinizing hormone receptors differs between actively signaling and desensitized receptors // J. Biol. Chem. 2003, V. 278. № 44. P. 42744–42749. https://doi.org/10.1074/jbc.M306133200
- Jardón-Valadez E., Ulloa-Aguirre A. Tracking conformational transitions of the gonadotropin hormone receptors in a bilayer of (SDPC) poly-unsaturated lipids from all-atom molecular dynamics simulations // PLoS Comput Biol. 2024. V. 20. № 1. e1011415. https://doi.org/10.1371/journal.pcbi.1011415
- Jiang X., Fischer D., Chen X. et al. Evidence for Follicle-stimulating Hormone Receptor as a Functional Trimer // J. Biol. Chem. 2014. V. 289. № 20. P. 14273–14282. https://doi.org/10.1074/jbc.M114.549592
- Jiang X., Liu H., Chen X. et al. Structure of follicle-stimulating hormone in complex with the entire ectodomain of its receptor // Proc Natl Acad Sci U S A. 2012. V. 109. № 31. P. 12491–12496. https://doi.org/10.1073/pnas.1206643109
- Johnson G.P., Jonas K.C. Mechanistic insight into how gonadotropin hormone receptor complexes direct signaling // Biol. Reprod. 2020. V. 102. № 4. P. 773–783. https://doi.org/10.1093/biolre/ioz228
- Johnson G.P., Onabanjo C.G.A., Hardy K. et al. Follicle-Stimulating Hormone Glycosylation Variants Distinctly Modulate Pre-antral Follicle Growth and Survival // Endocrinology. 2022. V. 163. № 12. bqac161. https://doi.org/10.1210/endocr/bqac161
- Jonas K.C., Chen S., Virta M. et al. Temporal reprogramming of calcium signalling via crosstalk of gonadotrophin receptors that associate as functionally asymmetric heteromers // Sci Rep. 2018. V. 8. № 1. 2239. https://doi.org/10.1038/s41598-018-20722-5
- Jonas K.C., Fanelli F., Huhtaniemi I.T., Hanyaloglu A.C. Single molecule analysis of functionally asymmetric G protein-coupled receptor (GPCR) oligomers reveals diverse spatial and structural assemblies // J. Biol. Chem. 201 5. V. 290. № 7. P. 3875–3892. https://doi.org/10.1074/jbc.M114.622498
- Kara E., Dupuy L., Bouillon C., Casteret S., Maurel M.C. Modulation of Gonadotropins Activity by Antibodies // Front Endocrinol (Lausanne). 2019. V. 10. 15. https://doi.org/10.3389/fendo.2019.00015
- Koistinen H., Koel M., Peters M. et al. Hyperglycosylated hCG activates LH/hCG-receptor with lower activity than hCG // Mol. Cell. Endocrinol. 2019. V. 479. P. 103–109. https://doi.org/10.1016/j.mce.2018.09.006
- Lapthorn A.J., Harris D.C., Littlejohn A. et al. Crystal structure of human chorionic gonadotropin // Nature. 1994. V. 369. № 6480. P. 455–461. https://doi.org/10.1038/369455a0
- Lazzaretti C., Simoni M., Casarini L., Paradiso E. Allosteric modulation of gonadotropin receptors // Front Endocrinol (Lausanne). 2023. V. 14. 1179079. https://doi.org/ 10.3389/fendo.2023.1179079
- Lee S.Y., Byambaragchaa M., Choi S.H. et al. Roles of N-linked and O-linked glycosylation sites in the activity of equine chorionic gonadotropin in cells expressing rat luteinizing hormone/chorionic gonadotropin receptor and follicle-stimulating hormone receptor // BMC Biotechnol. 2021. V. 21. № 1. 52. https://doi.org/10.1186/s12896-021-00712-8
- Lei Y., Hagen G.M., Smith S.M. et al. Constitutively-active human LH receptors are self-associated and located in rafts // Mol. Cell Endocrinol. 2007. V. 260–262. P. 65–72. https://doi.org/10.1016/j.mce.2005.11.046
- Maharana J., Banerjee R., Yadav M.K., Sarma P., Shukla A.K. Emerging structural insights into GPCR-β-arrestin interaction and functional outcomes // Curr. Opin Struct. Biol. 2022. V. 75. https://doi.org/10.1016/j.sbi.2022.102406
- Manglik A., Kobilka B.K., Steyaert J. Nanobodies to Study G Protein-Coupled Receptor Structure and Function // Annu Rev Pharmacol Toxicol. 2017. V. 57. P. 19–37. https://doi.org/10.1146/annurev-pharmtox-010716-104710
- Mann O.N., Kong C.S., Lucas E.S. et al. Expression and function of the luteinizing hormone choriogonadotropin receptor in human endometrial stromal cells // Sci. Rep. 2022. V. 12. № 1. https://doi.org/10.1038/s41598-022-12495-9
- Manna P.R., Pakarinen P., El-Hefnawy T., Huhtaniemi I.T. Functional assessment of the calcium messenger system in cultured mouse Leydig tumor cells: Regulation of human chorionic gonadotropin-induced expression of the steroidogenic acute regulatory protein // Endocrinology. 1999. V. 140. № 4. P. 1739–1751.https://doi.org/10.1210/endo.140.4.6650
- Mazurkiewicz J.E., Herrick-Davis K,. Barroso M. et al. Single-molecule analyses of fully functional fluorescent protein-tagged follitropin receptor reveal homodimerization and specific heterodimerization with lutropin receptor // Biol. Reprod. 2015. V. 92. № 4. 100. https://doi.org/10.1095/biolreprod.114.125781
- Meher B.R., Dixit A., Bousfield G.R., Lushington G.H. Glycosylation Effects on FSH-FSHR Interaction Dynamics: A Case Study of Different FSH Glycoforms by Molecular Dynamics Simulations // PLoS One. 2015. V. 10. № 9. e0137897. https://doi.org/10.1371/journal.pone.0137897
- Mejia R., Waite C., Ascoli M. Activation of Gq/11 in the mouse corpus luteum is required for parturition // Mol. Endocrinol. 2015. V. 29. № 2. P. 238–246. https://doi.org/10.1210/me.2014-1324
- Mertens-Walker I., Bolitho C., Baxter R.C., Marsh D.J. Gonadotropin-induced ovarian cancer cell migration and proliferation require extracellular signal-regulated kinase 1/2 activation regulated by calcium and protein kinase C{delta} // Endocr Relat Cancer. 2010. V. 17. № 2. P. 335–349. https://doi.org/10.1677/ERC-09-0152
- Mishra S., Ling H., Grimm M. et al. Cardiac hypertrophy and heart failure development through Gq and CaM kinase II signaling // J. Cardiovasc Pharmacol. 2010. V. 56. № 6. P. 598–603. https://doi.org/10.1097/FJC.0b013e3181e1d263
- Misra U.K., Kaczowka S., Pizzo S.V. The cAMP-activated GTP exchange factor, Epac1 upregulates plasma membrane and nuclear Akt kinase activities in 8-CPT-2-O-Me-cAMP-stimulated macrophages: Gene silencing of the cAMP-activated GTP exchange Epac1 prevents 8-CPT-2-O-Me-cAMP activation of Akt activity in macrophages // Cell Signal. 2008. V. 20. № 8. P. 1459–1470. https://doi.org/10.1016/j.cellsig.2008.04.002
- Moore S., Jaeschke H., Kleinau G. et al. Evaluation of small-molecule modulators of the luteinizing hormone/choriogonadotropin and thyroid stimulating hormone receptors: structure-activity relationships and selective binding patterns // J. Med. Chem. 2006. V. 49. № 13. P. 3888–3896. https://doi.org/10.1021/jm060247s
- Mukherjee S., Gurevich V.V., Preninger A. et al. Aspartic acid 564 in the third cytoplasmic loop of the luteinizing hormone/choriogonadotropin receptor is crucial for phosphorylation-independent interaction with arrestin2 // J. Biol. Chem. 2002. V. 277. № 20. P. 17916–17927. https://doi.org/10.1074/jbc.M110479200
- Munier M., Ayoub M., Suteau V. et al. In vitro effects of the endocrine disruptor p,p’DDT on human choriogonadotropin/luteinizing hormone receptor signaling // Arch Toxicol. 2021. V. 95. № 5. P. 1671–1681. https://doi.org/10.1007/s00204-021-03007-1
- Nascimento D.R., Barbalho E.C., Gondim Barrozo L. et al. The mechanisms that control the preantral to early antral follicle transition and the strategies to have efficient culture systems to promote their growth in vitro // Zygote. 2023. V. 31. № 4. P. 305–315. https://doi.org/10.1017/S0967199423000254
- Nchourupouo K.W.T., Nde J., Ngouongo Y.J.W., Zekeng S.S., Fongang B. Evolutionary Couplings and Molecular Dynamic Simulations Highlight Details of GPCRs Heterodimers’ Interfaces // Molecules. 2023. V. 28. № 4. 1838. https://doi.org/10.3390/molecules28041838
- Newton C.L., Whay A.M., McArdle C.A. et al. Rescue of expression and signaling of human luteinizing hormone G protein-coupled receptor mutants with an allosterically binding small-molecule agonist // Proc. Natl. Acad. Sci USA. 2011. V. 108. P. 7172–7176. https://doi.org/10.1073/pnas.1015723108
- Núñez Miguel R., Sanders J., Furmaniak J., Rees Smith B. Glycosylation pattern analysis of glycoprotein hormones and their receptors // J. Mol. Endocrinol. 2017. V. 58. № 1. P. 25–41. https://doi.org/10.1530/JME-16-0169
- Nwabuobi C., Arlier S., Schatz F. et al. hCG: Biological Functions and Clinical Applications // Int J. Mol. Sci. 2017. V. 18. № 10. https://doi.org/10.3390/ijms18102037
- Oestreich E.A., Malik S., Goonasekera S.A. et al. Epac and phospholipase Cepsilon regulate Ca2+ release in the heart by activation of protein kinase Cepsilon and calcium-calmodulin kinase II // J. Biol. Chem. 2009. V. 284. № 3. P. 1514–1522. https://doi.org/10.1074/jbc.M806994200
- Olejnik B., Kratz E.M., Zimmer M., Ferens-Sieczkowska M. Glycoprotein fucosylation is increased in seminal plasma of subfertile men // Asian J. Androl. 2015. V. 17. № 2. P. 274–280. https://doi.org/10.4103/1008-682X.138187
- Osuga Y., Hayashi M., Kudo M. et al. Co-expression of defective luteinizing hormone receptor fragments partially reconstitutes ligand-induced signal generation // J. Biol. Chem. 1997. V. 272. № 40. P. 25006–25012. https://doi.org/10.1074/jbc.272.40.25006
- Pakarainen T., Zhang F.P., Nurmi L., Poutanen M., Huhtaniemi I. Knockout of luteinizing hormone receptor abolishes the effects of follicle-stimulating hormone on preovulatory maturation and ovulation of mouse graafian follicles // Mol. Endocrinol. 2005. V. 19. № 10. P. 2591–2602. https://doi.org/10.1210/me.2005-0075
- Petersen T.S., Kristensen S.G., Jeppesen J.V. et al. Distribution and function of 3’,5’-Cyclic-AMP phosphodiesterases in the human ovary // Mol. Cell. Endocrinol. 2015. V. 403. P. 10–20. https://doi.org/10.1016/j.mce.2015.01.004
- Puett D., Li Y., DeMars G., Angelova K., Fanelli F. A functional transmembrane complex: the luteinizing hormone receptor with bound ligand and G protein // Mol. Cell. Endocrinol. 2007. V. 260-262. P. 126–136. https://doi.org/10.1016/j.mce.2006.05.009
- Qiao J., Han B. Diseases caused by mutations in luteinizing hormone/chorionic gonadotropin receptor // Prog. Mol. Biol. Transl. Sci. 2019. V. 161. P. 69–89. https://doi.org/10.1016/bs.pmbts.2018.09.007
- Querat B. Unconventional Actions of Gly-coprotein Hormone Subunits: A Comprehensive Review // Front Endocrinol (Lausanne). 2021. V. 12. https://doi.org/10.3389/fendo.2021.731966
- Riccetti L., De Pascali F., Gilioli L. et al. Human LH and hCG stimulate differently the early signalling pathways but result in equal testosterone synthesis in mouse Leydig cells in vitro // Reprod. Biol. Endocrinol. 2017. V. 15. № 1–2. https://doi.org/10.1186/s12958-016-0224-3
- Riccetti L., Yvinec R., Klett D. et al. Human Luteinizing Hormone and Chorionic Gonadotropin Display Biased Agonism at the LH and LH/CG Receptors // Sci. Rep. 2017. V. 7. № 1. 940. https://doi.org/10.1038/s41598-017-01078-8
- Sairam M.R. Role of carbohydrates in glycoprotein hormone signal transduction // FASEB J. 1989. V. 3. № 8. P. 1915–926. https://doi.org/10.1096/fasebj.3.8.2542111
- Schulze A., Kleinau G, Neumann S. et al. The intramolecular agonist is obligate for activation of glycoprotein hormone receptors // FASEB J. 2020. V. 34. № 8. P. 11243–11256. https://doi.org/10.1096/fj.202000100R
- Segaloff D.L. Regulatory processes governing the cell surface expression of LH and FSH receptors // Subcell Biochem. 2012. V. 63. P. 113–129. https://doi.org/10.1007/978-94-007-4765-4_7
- Shimizu-Albergine M., Tsai L.C., Patrucco E., Beavo J.A. cAMP-specific phosphodiesterases 8A and 8B, essential regulators of Leydig cell steroidogenesis // Mol. Pharmacol. 2012. V. 81. № 4. P. 556–566. https://doi.org/10.1124/mol.111.076125
- Shpakov A.O. Allosteric Regulation of G-Protein-Coupled Receptors: From Diversity of Molecular Mechanisms to Multiple Allosteric Sites and Their Ligands // Int. J. Mol. Sci. 2023. V. 24. № 7. https://doi.org/10.3390/ijms24076187
- Shpakov A.O., Bakhtyukov A.A., Dar’in D.V., Derkach K.V. Pretreatment of rats with an allosteric luteinizing hormone receptor agonist augments chorionic gonadotropin-induced stimulation of testosterone production // J. Evol. Biochem. Physiol. 2019. V. 55. № 6. P. 510–514. https://doi.org/10.1134/S0022093019060115
- Shpakov A.O., Dar’in D.V., Derkach K.V., Lobanov P.S. The stimulating influence of thienopyrimidine compounds on the adenylyl cyclase systems in the rat testes // Dokl. Biochem. Biophys. 2014. V. 456. P. 104–107. https://doi.org/10.1134/S1607672914030065
- Shpakova E.A., Derkach K.V., Shpakov A.O. Biological activity of lipophilic derivatives of peptide 562–572 of rat luteinizing hormone receptor // Dokl. Biochem Biophys. 2013. V. 452. № 1. P. 248–250. https://doi.org/10.1134/S1607672913050116
- Shpakova E.A., Sorokoumov V.N., Akent’ev A.V. et al. The Relationship between Micelle Formation and Biological Activity of Peptide 562–572 of Luteinizing Hormone Receptor Modified with Decanoyl Radicals // Cell tissue Biol. 2017. V. 11. P. 227–233. https://doi.org/10.1134/S1990519X17030105
- Slosky L.M., Caron M.G., Barak L.S. Biased Allosteric Modulators: New Frontiers in GPCR Drug Discovery // Trends Pharmacol Sci. 2021. V. 42. № 4. P. 283–299. https://doi.org/10.1016/j.tips.2020.12.005
- Sposini S., Hanyaloglu A.C. Driving gonadotrophin hormone receptor signalling: the role of membrane trafficking // Reproduction. 2018. V. 156. № 6. P. R195–R208. https://doi.org/10.1530/REP-18-0423
- Stevenson H., Bartram S., Charalambides M.M. et al. Kisspeptin-neuron control of LH pulsatility and ovulation // Front Endocrinol (Lausanne). 2022. V. 13. 951938. https://doi.org/10.3389/fendo.2022.951938
- Tan Y., Xu P., Huang S. et al. Structural insights into the ligand binding and Gi coupling of serotonin receptor 5-HT5A // Cell Discov. 2022. V. 8. № 1. 50. https://doi.org/10.1038/s41421-022-00412-3
- Toulis K.A., Goulis D.G., Venetis C.A. et al. Thyroid autoimmunity and miscarriages: the corpus luteum hypothesis // Med. Hypotheses. 2009. V. 73. № 6. P. 1060–1062. https://doi.org/10.1016/j.mehy.2009.05.012
- Trehan A., Rotgers E., Coffey E.T., Huhtaniemi I., Rivero-Müller A. CANDLES, an assay for monitoring GPCR induced cAMP generation in cell cultures // Cell Commun Signal. 2014. V. 12. https://doi.org/10.1186/s12964-014-0070-x
- Van de Lagemaat R., Raafs B.C., van Koppen C. et al. Prevention of the onset of ovarian hyperstimulation syndrome (OHSS) in the rat after ovulation induction with a low molecular weight agonist of the LH receptor compared with hCG and rec-LH // Endocrinology. 2011. V. 152. № 11. P. 4350–4357. https://doi.org/10.1210/en.2011-1077
- Van de Lagemaat R., Timmers C.M., Kelder J. et al. Induction of ovulation by a potent, orally active, low molecular weight agonist (Org 43553) of the luteinizing hormone receptor // Hum Reprod. 2009. V. 24. № 3. P. 640–648. https://doi.org/10.1093/humrep/den412
- Van de Lagemaat R., van Koppen C.J., Krajnc-Franken M.A. et al. Contraception by induction of luteinized unruptured follicles with short-acting low molecular weight FSH receptor agonists in female animal models // Reproduction. 2011. V. 142. № 6. P. 893–905. doi: 10.1530/REP-11-0234
- Vander Ark A., Cao J., Li X. TGF-β receptors: In and beyond TGF-β signaling // Cell Signal. 2018. V. 52. P. 112–120. https://doi.org/10.1016/j.cellsig.2018.09.002
- Van Koppen C.J., Zaman G.J., Timmers C.M. et al. A signaling-selective, nanomolar potent allosteric low molecular weight agonist for the human luteinizing hormone receptor // Naunyn Schmiedebergs Arch Pharmacol. 2008. V. 378. № 5. P. 503–514. https://doi.org/10.1007/s00210-008-0318-3
- Van Petegem F. Ryanodine receptors: allosteric ion channel giants // J. Mol. Biol. 2015. V. 427. № 1. P. 31–53. https://doi.org/10.1016/j.jmb.2014.08.004
- Van Straten N.C., Schoonus-Gerritsma G.G., van Someren R.G. et al. The first orally active low molecular weight agonists for the LH receptor: thienopyr(im)idines with therapeutic potential for ovulation induction. Chembiochem. 2002. V. 3. № 10. P. 1023–1026. https://doi.org/10.1002/1439-7633(20021004)3:10<1023::AID CBIC1023>3.0.CO;2-9
- Wang X.N., Greenwald G.S. Human chorionic gonadotropin or human recombinant follicle-stimulating hormone (FSH)-induced ovulation and subsequent fertilization and early embryo development in hypophysectomized FSH-primed mice // Endocrinology. 1993. V. 132. № 5. P. 2009–2016. https://doi.org/10.1210/endo.132.5.8477652
- Wehbi V., Decourtye J., Piketty V. et al. Selective modulation of follicle-stimulating hormone signaling pathways with enhancing equine chorionic gonadotropin/antibody immune complexes // Endocrinology. 2010. V. 151. № 6. P. 2788–2799. https://doi.org/10.1210/en.2009-0892
- Wehbi V., Tranchant T., Durand G. et al. Partially deglycosylated equine LH preferentially activates beta-arrestin-dependent signaling at the follicle-stimulating hormone receptor // Mol. Endocrinol. 2010. V. 24. № 3. P. 561–573. https://doi.org/10.1210/me.2009-0347
- Wess J., Oteng A.B., Rivera-Gonzalez O., Gurevich E.V., Gurevich V.V. β-Arrestins: Structure, Function, Physiology, and Pharmacological Perspectives // Pharmacol Rev. 2023. V. 75. № 5. P. 854–884. https://doi.org/ 10.1124/pharmrev.121.000302
- Wide L., Eriksson K. Molecular size and charge as dimensions to identify and characterize circulating glycoforms of human FSH, LH and TSH // Ups. J. Med. Sci. 2017. V. 122. № 4. P. 217–223. https://doi.org/10.1080/03009734.2017. 1412373
- Wide L., Eriksson K. Low-glycosylated forms of both FSH and LH play major roles in the natural ovarian stimulation // Ups. J. Med. Sci. 2018. V. 123. № 2. P. 100–108. https://doi.org/10.1080/03009734.2018.1467983
- Wide L., Eriksson K., Sluss P.M., Hall J.E. Determination of Half-lives of Circulating FSH and LH Glycoforms in Women During GnRH Receptor Blockade // J. Clin Endocrinol Metab. 2022. V. 107. № 10. e4058–e4062. https://doi.org/10.1210/clinem/dgac434
- Wolf-Ringwall A.L., Winter P.W., Roess D.A., George Barisas B. Luteinizing hormone receptors are confined in mesoscale plasma membrane microdomains throughout recovery from receptor desensitization // Cell Biochem Biophys. 2014. V. 68. № 3. P. 561–569. https://doi.org/10.1007/s12013-013-9738-x
- Wortmann L., Lindenthal B., Muhn P. et al. Discovery of BAY-298 and BAY-899: Tetrahydro-1,6-naphthyridine-Based, Potent, and Selective Antagonists of the Luteinizing Hormone Receptor Which Reduce Sex Hormone Levels in Vivo // J. Med. Chem. 2019. V. 62. № 22. P. 10321–10341. https://doi.org/10.1021/acs.jmedchem.9b01382
- Wu A., Salom D., Hong J.D. et al. Structural basis for the allosteric modulation of rhodopsin by nanobody binding to its extracellular domain // Nat Commun. 2023. V. 14. № 1. 5209. https://doi.org/10.1038/s41467-023-40911-9.
- Wu H., Lustbader J.W., Liu Y., Canfield R.E., Hendrickson W.A. Structure of human chorionic gonadotropin at 2.6 A resolution from MAD analysis of the selenomethionyl protein // Structure. 1994. V. 2. № 6. P. 545–558. https://doi.org/10.1016/s0969-2126(00)00054-x
- Zariñán T., Butnev V.Y., Gutiérrez-Sagal R. et al. In Vitro Impact of FSH Glycosylation Variants on FSH Receptor-stimulated Signal Transduction and Functional Selectivity // J. Endocr. Soc. 2020. V. 4. № 5. https://doi.org/10.1210/jendso/bvaa019
- Zenzmaier C., Gerth R., Gruschwitz M. et al. Decreased levels of genuine large free hCG alpha in men presenting with abnormal semen analysis // Reprod. Biol. Endocrinol. 2011. V. 9. https://doi.org/10.1186/1477-7827-9-114
- Zhang H., Kong Q., Wang J., Jiang Y., Hua H. Complex roles of cAMP-PKA-CREB signaling in cancer // Exp. Hematol. Oncol. 2020. V. 9. № 1. 32. https://doi.org/10.1186/s40164-020-00191-1
- Zhang L., Shi G. Gq-Coupled Receptors in Autoimmunity // J. Immunol. Res. 2016. V. 2016. https://doi.org/10.1155/2016/3969023
- Zhang M., Chen T., Lu X. et al. G protein-coupled receptors (GPCRs): Advances in structures, mechanisms, and drug discovery // Signal Transduct Target Ther. 2024. V. 9. № 1. https://doi.org/10.1038/s41392-024-01803-6
- Zheng M., Cadenas J., Pors S.E. et al. Reducing 3D Hydrogel Stiffness, Addition of Oestradiol in a Physiological Concentration and Increasing FSH Concentration Improve In Vitro Growth of Murine Preantral Follicles // Int. J. Mol. Sci. 2023. V. 24. № 15. 12499. https://doi.org/10.3390/ijms241512499
- Zhu C., Lan X., Wei Z., Yu J., Zhang J. Allosteric modulation of G protein-coupled receptors as a novel therapeutic strategy in neuropathic pain // Acta Pharm Sin B. 2024. V. 14. № 1. P. 67–86. https://doi.org/10.1016/j.apsb.2023.07.020
- Zhu X., Gilbert S., Birnbaumer M., Birnbaumer L. Dual signaling potential is common among Gs-coupled receptors and dependent on receptor density // Mol. Pharmacol. 1994. V. 46. № 3. P. 460–469.
- Zoenen M., Urizar E., Swillens S., Vassart G., Costagliola S. Evidence for activity-regulated hormone-binding cooperativity across glycoprotein hormone receptor homomers // Nat Commun. 2012. V. 3. 1007. https://doi.org/10.1038/ncomms1991
Қосымша файлдар
