Ожирение как основной фактор влияния метаболического синдрома на функцию внешнего дыхания

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В представленном обзоре проведен обобщенный анализ современных научных данных, объясняющих физиологические механизмы влияния ожирения на функцию внешнего дыхания. Подчеркивается многофакторный характер респираторного действия ожирения, включающий эффекты механической и воспалительной направленности. Рассмотрены последствия рестриктивных и обструктивных изменений в биомеханике дыхания, изменений топографического распределения вентиляции легких, приводящие к несоответствию вентиляции и перфузии, снижению эффективности работы дыхательных мышц. Перспективным направлением исследований признается выяснение центральных механизмов реализации респираторного действия провоспалительных медиаторов, экспрессируемых клетками жировой ткани. Особое внимание уделяется действию лептина, который является основным регулятором метаболизма и контроля дыхания при ожирении. Обсуждается его способность модулировать функцию центральных хемочувствительных структур. Предполагается, что увеличение легочной вентиляции вследствие повышения продукции лептина при ожирении имеет компенсаторный характер и позволяет пациентам с ожирением поддерживать нормокапнию, несмотря на увеличение механической нагрузки на дыхание. Тогда как резистентность к лептину и подавленная гиперкапническая вентиляционная реакция играют ключевую роль в развитии синдрома ожирения–гиповентиляции. Сделан вывод о необходимости дальнейшего изучения физиологических механизмов влияния ожирения на функцию внешнего дыхания с целью поиска новых эффективных терапевтических методов лечения заболеваний, ассоциированных с ожирением, которое является основным фактором развития метаболического синдрома.

Полный текст

Доступ закрыт

Об авторах

Н. П. Александрова

ФГБУН Институт физиологии имени И.П. Павлова РАН

Автор, ответственный за переписку.
Email: aleks@infran.ru
Россия, Санкт-Петербург, 199034

Список литературы

  1. Александрова Н.П. Механизмы влияния цитокинового шторма на функцию внешнего дыхания // Успехи физиол. наук. 2022. Т. 53. № 3. С. 3–14. https://doi.org/: 10.31857/S0301179822030043
  2. Беленков Ю.Н., Привалова Е.В., Каплунова В.Ю. и др. Метаболический синдром: история развития, основные критерии диагностики // Рациональная Фармакотерапия в Кардиологии. 2018. Т. 14. № 5. С. 757–764. https://doi.org/: 10.20996/1819-6446-2018-14-5-757-764
  3. Инюшкина Е.М., Исакова Т.С., Захарушкина А.А., Инюшкин А.Н. Участие лептина в регуляции дыхания на уровне комплекса пре-Бетцингера // Современные вопросы биомедицины. 2021. Т. 5. № 3. https://doi.org/: 10.51871/2588-0500_2021_05_03_7
  4. Калинина Е.П., Гельцер Б.И., Курпатов И.В., Горборукова Т.В., Гвозденко Т.А. Оценка роли цитокин-опосредованных механизмов в развитии дисфункции дыхательных мышц у больных хронической болезнью легких // Мед. иммунология. 2019. Т. 21. № 3. С. 487–494. https://doi.org/: 10.15789/1563-0625-2019-3-487-494
  5. Ковалькова Н.А., Рагино Ю.И, Травникова Н.Ю. и др. Ассоциации метаболического синдрома и сниженной функции легких у лиц молодого возраста // Терапевт. архив. 2017. С. 54–61. https://doi.org/: 10.17116/terarkh2017891054-61
  6. Пальман А.Д. Синдром ожирения-гиповентиляции: современный взгляд // Эффективная фармакотерапия. Неврология и психиатрия. Спец выпуск “Сон и его расстройства – 4”. 2016. С. 68–73.
  7. Aleksandrova N.P., Klinnikova A.A., Danilova G.A. Cyclooxygenase and nitric oxide synthase pathways mediate the respiratory effects of TNF-α in rats // Respir. Physiol. Neurobiol. 2021. V. 284. 103567. https://doi.org/: 10.1016/j.resp.2020.103567
  8. Amorim M.R., Aung O., Mokhlesi B., Polotsky V.Y. Leptin-mediated neural targets in obesity hypoventilation syndrome // Sleep. 2022. V. 45. № 9. zsac153. https://doi.org/: 10.1093/sleep/zsac153
  9. Banks W.A. Leptin and the Blood-Brain Barrier: Curiosities and Controversies // Compr. Physiol. 2021. V. 11. № 4. P. 2351–2369. https://doi.org/: 10.1002/cphy.c200017.
  10. Bassi M., Furuya W.I., Menani J.V. et al. Leptin into the ventrolateral medulla facilitates chemorespiratory response in leptin-deficient (ob/ob) mice // Acta Physiol. (Oxf). 2014. V. 211. № 1. P. 240–248. https://doi.org/: 10.1111/apha.12257.
  11. Bassi M., Nakamura N.B., Furuya W.I. et al. Activation of the brain melanocortin system is required for leptin-induced modulation of chemorespiratory function // Acta Physiol. 2015. V. 213. № 4. P. 893–901. https://doi.org/:10.1111/apha.12394
  12. Bastard J.P., Jardel C., Bruckert E. et al. Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss // J. Clin. Endocrinol. Metab. 2000. V. 85. № 9. P. 3338–3342. https://doi.org/: 10.1210/jcem.85.9.6839.
  13. Behazin N., Jones S.B., Cohen R.I., Loring S.H. Respiratory restriction and elevated pleural and esophageal pressures in morbid obesity // J. Appl. Physiol. (1985) 2010.V. 108. № 1. P. 212–218. https://doi.org/: 10.1152/japplphysiol.91356.2008.
  14. Berger K.I., Goldring R.M.., Rapoport D.M. Obesity hypoventilation syndrome // Semin. Respir. Crit. Care. Med. 2009. V.30. № 3. P. 253–261. https://doi.org/: 10.1055/s-0029-1222439
  15. Bickelmann A.G., Burwell C.S., Robin E.D., Whaley R.D. Extreme obesity associated with alveolar hypoventilation: A Pickwickian syndrome // Am. J. Med. 1956. Vol. 21. № 5. P. 811–818. https://doi.org/: 10.1016/0002-9343(56)90094-8
  16. Blüher M. Obesity: Global epidemiology and pathogenesis // Nat. Rev. Endocrinol. 2019. V. 15. № 5. P. 288–298. https://doi.org/: 10.1038/s41574-019-0176-8
  17. Böing S., Randerath W.J. Chronic hypoventilation syndromes and sleep-related hypoventilation // J. Thorac. Dis. 2015. V. 7. P. 1273–1285.https://doi.org/: 10.3978/j.issn.2072-1439.2015.06.10
  18. Caballero-Eraso C., Shin M.K., Pho H. et al. Leptin Acts in the Carotid Bodies to Increase Minute Ventilation during Wakefulness and Sleep and Augment the Hypoxic Ventilatory Response // J. Physiol. 2019. V. 597. P. 151–172. https://doi.org/: 10.1113/JP276900
  19. Caro J.F., Kolaczynski J.W., Nyce M.R., et al. Decreased cerebrospinal fluid/serum leptin ratio in obesity: a possible mechanism for leptin resistance // Lancet. 1996. V. 348. P.159–1561. https://doi.org/: 10.1016/s0140-6736(96)03173-x
  20. Cheryl M.S., King G.G., Berend N. Physiology of obesity and effects on lung function // J. Appl. Physiol. (1985). 2010. V. 108. № 1. P. 206–211. https://doi.org/: 10.1152/japplphysiol.00694.2009.
  21. Ching-Kai Lin, Work of breathing and respiratory drive in obesity // Respirology. 2012. V. 17. № 3. P. 402–11. https://doi.org/: 10.1111/j.1440-1843.2011.02124.x
  22. Choi J.H., Park S., Shin Y.H., Kim M.Y., Lee Y.J. Sex differences in the relationship between metabolic syndrome and pulmonary function // Endocr. J. 2011. V. 58. № 6. P. 459–465. https://doi.org/10.1507/endocrj.k11e-011
  23. Collet F., Mallart A., Bervar J.F., et al. Physiologic correlates of dyspnea in patients with morbid obesity // Int. J. Obes. 2007. V. 31. № 4. P. 700–706. https://doi.org/: 10.1038/sj.ijo.0803460
  24. Collins L.C., Hoberty P.D., Walker J.F., Fletcher E.C., Peiris A.N. The effect of body fat distribution on pulmonary function tests // Chest. 1995. V. 10. №7. 5. P. 1298–12302. https://doi.org/: 10.1378/chest.107.5.1298
  25. Considine R.V., Sinha M.K., Heiman M.L. et al. Serum immunoreactive leptin concentrations in normal-weight and obese humans // N. Engl. J. Med. 1996. V. 334. P. 292–295. https://doi.org/: 10.1056/NEJM199602013340503
  26. Coppack S.W. Pro-inflammatory cytokines and adipose tissue // Proc. Nut.r Soc. 2001. V. 60. № 3. P. 349–356. https://doi.org/: 10.1079/PNS2001110
  27. De Blasio M.J., Boije M., Kempster S.L. et al. Leptin Matures Aspects of Lung Structure and Function in the Ovine Fetus // Endocrinology. 2016. V. 157. № .1. P. 395–404. https://doi.org/: 10.1210/en.2015-1729
  28. Do J., Chang Z., Sekerková G., McCrimmon D., Martina M. A leptin-mediated neural mechanism linking breathing to metabolism // Cell. Rep. 2020. V. 33. № 6. P. 108358. https://doi.org/: 10.1016/j.celrep.2020.108358
  29. Dodson M.V., Mir P.S., Hausman G.J. et al. Obesity, metabolic syndrome, and adipocytes // J. Lipids. 2011. Vol. 7. P. 72–86. https://doi.org/: 10.1155/2011/721686.
  30. Eichenberger A., Proietti S., Wicky S., et al. Morbid obesity and postoperative pulmonary atelectasis: an underestimated problem // Anesth. Analg. 2002. V. 95. № 6. P. 1788–92. https://doi.org/: 10.1097/00000539-200212000-00060
  31. Faloia E., Michetti G., De Robertis M. et al. Inflammation as a link between obesity and metabolic syndrome // J. Nutr. Metab. 2012. V. 2012. 476380. https://doi.org/: 10.1155/2012/476380
  32. Finucane M.M., Stevens G.A., Cowan M.J. et al. National, regional, and global trends in body-mass index since 1980: Systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants // The Lancet. 2011. V. 377. № 9765. P. 557–56. https://doi.org/: 10.1016/S0140-6736(10)62037-5
  33. Gregor M.F., Hotamisligil G.S. Inflammatory mechanisms in obesity // Annu. Rev. Immunol. 2011. V. 29. P. 415–445. https://doi.org/: 10.1146/annurev-immunol-031210-101322.
  34. Hodgson L.E., Murphy P.B., Hart N. Respiratory management of the obese patient undergoing surgery // J. Thorac. Dis. 2015. V. 7. № 5. P. 943–952. https://doi.org/: 10.3978/j.issn.2072-1439.2015.03.08
  35. Holley H.S., Milic-Emili J., Becklake M.R. et al. Regional distribution of pulmonary ventilation and perfusion in obesity // J. Clin. Invest. 1967. V. 46. № 4. P. 475–481. https://doi.org/: 10.1172/JCI105549
  36. Hosoi T., Kawagishi T., Okuma Y., Tanaka J., Nomura Y. Brain stem is a direct target for leptin’s action in the central nervous system // Endocrinology. 2002. V. 143. № 9. P. 3498–3504. https://doi.org/: 10.1210/en.2002-220077
  37. Inyushkin A.N., Inyushkina E.M., Merkulova N.A. Respiratory responses to microinjecions of leptin into the solitary tract nucleus // Neurosci. Behav. Physiol. 2009. V. 39. № 3. P. 231–240. https://doi.org/: 10.1007/s11055-009-9124-8
  38. Inyushkina E.M., Merkulova N.A., Inyushkin A.N. Mechanisms of the respiratory activity of leptin at the level of the solitary tract nucleus // Neurosci. Behav. Physiol. 2010. V. 40. № 7. P. 707–713. https://doi.org/: 10.1007/s11055-010-9316-2
  39. Jones R.L., Nzekwu M.M. The effects of body mass index on lung volumes // Chest. 2006.V. 130. № 3. P. 827–833. https://doi.org/: 10.1378/chest.130.3.827
  40. Kaplan M.S. Huguet N., Newsom J.T., McFarland B.H., Lindsay J. Prevalence and correlates of overweight and obesity among older adults: Findings from the Canadian National Population Health Survey // J. Gerontol. 2003. V. 58. № 11. P. 1018–1030. https://doi.org/: 10.1093/gerona/58.11.m1018
  41. Kern P.A., Ranganathan S., Li C., Wood L., Ranganathan G. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance // Am. J. Physio.l Endocrinol. Metab. 2001. V. 280. № 5. P. E745–E751. https://doi.org/: 10.1152/ajpendo.2001.280.5.
  42. Koenig S.M. Pulmonary complications of obesity // Am. J. Med. Sci. 2001. V. 321. № 4. P. 249–279. https://doi.org/: 10.1097/00000441-200104000-00006
  43. Koton S., Sang Y., Schneider A.L. et al. Trends in stroke incidence rates in older US adults: An update from the Atherosclerosis Risk In Communities (ARIC) cohort study // JAMA Neurol. 2020. V. 77. № 1. P. 109–113. https://doi.org/: 10.1001/jamaneurol.2019.3258
  44. Laakso M., Kuusisto J., Stancakova A. et al. The metabolic syndrome in men study: A resource for studies of metabolic and cardiovascular diseases // J. Lipid. Res. 2017. V. 58. № 3. P. 481–493. https://doi.org/: 10.1194/jlr.O072629
  45. Ladosky W., Botelho M.A., Albuquerque J.P. Chest mechanics in morbidly obese non-hypoventilated patients // Respir. Med. 2001. V. 95. № 4. P. 281–286. https://doi.org/: 10.1053/rmed.2001.1035
  46. Lavie C.J., Milani R.V., Ventura H.O. Obesity and cardiovascular disease: Risk factor, paradox, and impact of weight loss // J. Am. Coll. Cardiol. 2009. V. 53. № 21. P. 1925–1932. https://doi.org/: 10.1016/j.jacc.2008.12.068
  47. Leone N., Courbon D., Thomas F. et al. Lung function impairment and metabolic syndrome: The critical role of abdominal obesity // Am. J. Respir. Crit. Care. Med. 2009. V. 179. № 6. P. 509–516. https://doi.org/: 10.1164/rccm.200807-1195OC
  48. Masa J.F., Pépin J-L., Borel J-C. et al. Obesity hypoventilation syndrome // Eur. Respir. Rev. 2019. V. 28: 180097. https://doi.org/: 10.1183/16000617.0097-2018
  49. Mokhlesi B., Kryger M.H., Grunstein R.R. Assessment and management of patients with obesity hypoventilation syndrome // Proc. Am. Thorac. Soc. 2008. V. 5. № 2. P. 218–225. https://doi.org/: 10.1513/pats.200708-122MG
  50. Naimark A., Cherniack R.M. Compliance of the respiratory system and its components in health and obesity // J. Appl. Physiol. 1960. V. 15. № 377–382. https://doi.org/: 10.1152/jappl.1960.15.3.377.
  51. O’Donnell C.P., Schaub C.D., Haines A.S. et al. Leptin prevents respiratory depression in obesity // Am. J. Respir. Crit. Care. Med. 1999. V. 159. P. 1477–1484. https://doi.org/: 10.1164/ajrccm.159.5.9809025
  52. Ochs-Balcom H.M., Grant B.J., Muti P. et al. Pulmonary function and abdominal adiposity in the general population // Chest. 2006. V. 129. № 4. P. 853–862. https://doi.org/: 10.1378/chest.129.4.853
  53. Pankow W., Podszus T., Gutheil T. et al. Expiratory flow limitation and intrinsic positive end-expiratory pressure in obesity // J. Appl. Physiol. 1998. V. 85. № 4.P. 1236–43. https://doi.org/: 10.1152/jappl.1998.85.4.1236
  54. Pelleymounter M.A., Cullen M..J, Baker M.B. et al. Effects of the obese gene product on body weight regulation in ob/ob mice // Science. 1995. V. 269 (5223). P. 540–543. https://doi.org/: 10.1126/science.7624776
  55. Pelosi P., Croci M., Ravagnan I. et al. The effects of body mass on lung volumes, respiratory mechanics, and gas exchange during general anesthesia // Anesth. Analg. 1998. V. 87. № 3. P. 654–660. https://doi.org/: 10.1097/00000539-199809000-00031
  56. Pepin J.L., Timsit J.F., Tamisier R. et al. Prevention and care of respiratory failure in obese patients // Lancet Respir. Med. 2016. V 4. № 5. P. 407–418. https://doi.org/: 10.1016/S2213-2600(16)00054-0
  57. Periyalil H.A., Wood L.G., Wright T.A. et al. Obese asthmatics are characterized by altered adipose tissue macrophage activation // Clin. Exp. Allergy. 2018. V. 48. № 6. P. 641–649. https://doi.org/: 10.1111/cea.13109
  58. Peters U. Dixon A.E. The effect of obesity on lung function // Expert. Rev. Respir. Med. 2018. V. 12. № 9. P. 755–767. https://doi.org/: 10.1080/17476348.2018.1506331
  59. Phipps P.R., Starritt E., Caterson I., Grunstein R.R. Association of serum leptin with hypoventilation in human obesity // Thorax 2002. № 57 P. 75–76. https://doi.org/: 10.1136/thorax.57.1.75
  60. Primeau V., Coderre L., Karelis A.D. et al. Characterizing the profile of obese patients who are metabolically healthy // Int. J. Obes. (Lond). 2011. V. 35. № 3. P. 971–81. https://doi.org/: 10.1038/ijo.2010.216
  61. Ray C.S., Sue D.Y., Bray G., Hansen J.E., Wasserman K. Effects of obesity on respiratory function // Am. Rev. Respir. Dis. 1983. V. 128. № 3. P. 501–6. https://doi.org/: 10.1164/arrd.1983.128.3.501
  62. Rivas E., Arismendi E., Agustí A. et al. Ventilation/Perfusion distribution abnormalities in morbidly obese subjects before and after bariatric surgery // Chest. 2015. V. 147. № 4. P. 1127–1134. https://doi.org/: 10.1378/chest.14-1749
  63. Rodríguez-Hernández H., Simental-Mendía L., Rodríguez-Ramírez G., Reyes-Romero M. Obesity and Inflammation: Epidemiology, Risk Factors, and Markers of Inflammation // Int. J. Endocrinol. 2013. V. 2013. P. 678159. https://doi.org/: 10.1155/2013/678159
  64. Roth C.L., Kratz M., Ralston M.M. et al. Changes in adipose-derived inflammatory cytokines and chemokines after successful lifestyle intervention in obese children // Metabolism. 2011. V. 60. № 4. P. 445–452. https://doi.org/: 10.1016/j.metabol.2010.03.023
  65. Rubinstein I., Zamel N., DuBarry L., Hoffstein V. Airflow limitation in morbidly obese nonsmoking men // Ann. Intern. Med. 1990. V. 112. № 11. P. 828–32.
  66. Rutting S., Mahadev S., Tonga K.O. et al. Obesity alters the topographical distribution of ventilation and the regional response to bronchoconstriction // J. Appl. Physiol. 2020. V. 128. № 1. P. 168–177. https://doi.org/: 10.1152/japplphysiol.00482.2019
  67. Schroder K., Tschopp J. The inflammasomes // Cell. 2010. V. 140. № 6. P. 821–32. https://doi.org/: 10.1016/j.cell.2010.01.040
  68. Scott M.M., Lachey J.L., Sternson S.M. et al. Leptin targets in the mouse brain // J. Comp. Neurol. 2009.V. 514. № 5. P. 518–532. https://doi.org/: 10.1002/cne.22025
  69. Shah N.M., Shrimanker S., Kaltsakas G. Defining obesity hypoventilation syndrome // Breathe. 2021. V. 17. № 3. P. 210089. https://doi.org/: 10.1183/20734735.0089-2021
  70. Sharp J.T., Henry J.P., Sweany S.K. et al. The total work of breathing in normal and obese men // J. Clin. Invest. 1964. V. 43. P. 728–739. https://doi.org/: 10.1172/JCI104957
  71. Shimura R., Tatsumi K., Nakamura A.et al. Fat accumulation, leptin, and hypercapnia in obstructive sleep apnea-hypopnea syndrome // Chest. 2005. V. 127. № 2. P. 543–549. https://doi.org/: 10.1378/chest.127.2.543
  72. Sideleva O., Suratt B.T., Black K.E. et al. Obesity and asthma: an inflammatory disease of adipose tissue not the airway // Am. J. Respir. Crit. Care. Med. 2012. V. 186. № 7. P. 598–605. https://doi.org/: 10.1164/rccm.201203-0573OC
  73. Solinas G., Karin M. JNK1 and IKKβ: Molecular links between obesity and metabolic dysfunction. // The FASEB J. 2010. V. 24. № 8. P. 2596–2611. https://doi.org/: 10.1096/fj.09-151340
  74. Staiger H., Tschritter O., Machann J. et al. Relationship of serum adiponectin and leptin concentrations with body fat distribution in humans // Obes. Res. 2003. V. 11. № 3. P. 368–372. https://doi.org/: 10.1038/oby.2003.48
  75. Steier J., Jolley C.J., Seymour J. et al. Neural respiratory drive in obesity // Thorax. 2009. V. 64. № 8. P. 719–725. https://doi.org/: 10.1136/thx.2008.109728
  76. Stienstra R., Tack C.J., Kanneganti T.D., Joosten L.A., Netea M.G. The inflammasome puts obesity in the danger zone // Cell Metabolism. 2012. V. 15. № 1. P. 10–18. https://doi.org/: 10.1016/j.cmet.2011.10.011
  77. Sugerman H., Windsor A., Bessos M. et al. Intra-abdominal pressure, sagittal abdominal diameter and obesity comorbidity // J. Intern. Med. 1997. V. 241. № 1. P. 71–79. https://doi.org/: 10.1046/j.1365-2796.1997.89104000.x
  78. Sun L., Zhu M., Wang M. et al. Whole-brain monosynaptic inputs and outputs of leptin receptor b neurons of the nucleus tractus solitarii in mice // Brain. Res. Bull. 2023. V. 201:110693. https://doi.org/: 10.1016/j.brainresbull.2023.110693
  79. Torday J.S., Powell F.L., Farmer C.G. et al. Leptin integrates vertebrate evolution: from oxygen to the blood-gas barrier // Res. Physiol. Neurobiol. 2010. V. 173. P. S37–42. https://doi.org/: 10.1016/j.resp.2010.01.007
  80. Voronkova O., Birulina Y., Saprina T., Esimova I. The role of metabolic syndrome factors in the pathogenesis of respiratory disorders // Pulmonologia. 2021. V. 33. № 4. P. 552–558. https://doi.org/: 10.18093/0869-0189-2022-2419
  81. Weisberg S.P., McCann D., Desai M. et al. Obesity is associated with macrophage accumulation in adipose tissue // J. Clin. Invest. 2003. V. 112. № 12. P. 1796–808. https://doi.org/: 10.1172/JCI19246
  82. Yu H., Shi L., Chen J. et al. Neural Circuit Mechanism Controlling Breathing by Leptin in the Nucleus Tractus Solitarii // Neurosci. Bull. 2022. V. 38. № 2. P. 149–165. https://doi.org/: 10.1007/s12264-021-00742-4
  83. Zavorsky G.S., Hoffman S.L. Pulmonary gas exchange in the morbidly obese // Obes. Rev. 2008.; V. 9. № 4. P. 326–339. https://doi.org/: 10.1111/j.1467-789X.2008.00471.x
  84. Zerah F., Harf A., Perlemuter L. et al. Effects of obesity on respiratory resistance // Chest. 1993. V. 103. № 5. P. 1470–1476. https://doi.org/: 10.1378/chest.103.5.1470
  85. Zhang Y., Proenca R., Maffei M. et al. Positional cloning of the mouse obese gene and its human homologue // Nature. 1994. V. 372 (6505). P. 425–432. https://doi.org/: 10.1038/372425a0

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Схема основных механизмов влияния ожирения на функцию внешнего дыхания.

Скачать (191KB)

© Российская академия наук, 2024