TRPM8 channels, cold and headache: data of experimental and clinical studies
- 作者: Sokolov A.Y.1, Skiba I.B.2, Lyubashina O.A.1
-
隶属关系:
- Pavlov Institute of Physiology of the Russian Academy of Sciences
- Pavlov First Saint Petersburg State Medical University
- 期: 卷 55, 编号 3 (2024)
- 页面: 112-122
- 栏目: Articles
- URL: https://permmedjournal.ru/0301-1798/article/view/676223
- DOI: https://doi.org/10.31857/S0301179824030078
- EDN: https://elibrary.ru/BAXJVN
- ID: 676223
如何引用文章
详细
Abstract – Different types of headaches, including migraine, may have a causal relationship with cold exposure, and this relationship can be either positive or negative, i.e. cold can both provoke and alleviate cephalalgia. Various representatives of the transient receptor potential ion channel superfamily, in particular TRPM8, act as molecular thermoreceptors that provide signal transduction in the response to low temperatures. These channels, which are known to mediate the normal cold sensation and play a role in both cold-induced pain and cryoanalgesia, are often considered as a promising target for the development of principally new anti-migraine drugs. This review summarizes recently obtained data on the TRPM8 structure and function, and their role in the pathogenesis of migraine, as well as discusses the intriguingly inconsistent results of studying TRPM8 agonists and antagonists in experimental headache models and clinical trials. Analyzing data from various studies allows to conclude that TRPM8 activation can be both pro- and antinociceptive; this correlates with the reported dual effect of cold exposure on the induction and resolution of headaches, leaving open the question on the vector of the TRPM8 pharmacological modulation required to produce anticephalgic effect.
关键词
全文:

作者简介
A. Sokolov
Pavlov Institute of Physiology of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: alexey.y.sokolov@gmail.com
俄罗斯联邦, 199034, St. Petersburg
I. Skiba
Pavlov First Saint Petersburg State Medical University
Email: yaver-99@mail.ru
俄罗斯联邦, 179022, St. Petersburg
O. Lyubashina
Pavlov Institute of Physiology of the Russian Academy of Sciences
Email: lyubashinaoa@infran.ru
俄罗斯联邦, 199034, St. Petersburg
参考
- Азимова Ю.Э., Амелин А.В., Алферова В.В. и др. Клинические рекомендации “Мигрень”// Журнал неврологии и психиатрии им. С.С. Корсакова. 2022. Т. 122. № 1–3. С. 4–36. https://doi.org/10.17116/jnevro20221220134
- Амелин А.В., Соколов А.Ю., Ваганова Ю.С. Мигрень. От патогенеза до лечения. М.: МЕДпресс-информ, 2023. 516 с.
- Долгорукова А.Н., Соколов А.Ю. Электрофизиологическая модель тригеминоваскулярной ноцицепции как инструмент экспериментального изучения фармакотерапии мигрени // Российский журнал боли. 2021. Т. 19. № 3. С. 31– 38. https://doi.org/10.17116/pain20211903131
- Международная классификация головной боли (3-е издание, 2018): адаптированная русскоязычная версия. URL: https://ihs-headache.org/wp-content/uploads/2022/09/ICHD-3-Russian.pdf (дата обращения 11.04.2024).
- Aizawa N., Fujita T. The TRPM8 channel as a potential therapeutic target for bladder hypersensitive disorders // J. Smooth Muscle Res. 2022. V. 58. P. 11–21. https://doi.org/10.1540/jsmr.58.11
- Akerman S., Holland P.R., Hoffmann J. Pearls and pitfalls in experimental in vivo models of migraine: dural trigeminovascular nociception // Cephalalgia. 2013. V. 33. № 8. Р. 577–592. https://doi.org/10.1177/0333102412472071
- Alarcón-Alarcón D., Cabañero D., de Andrés-López J. et al. TRPM8 contributes to sex dimorphism by promoting recovery of normal sensitivity in a mouse model of chronic migraine // Nat. Commun. 2022. V. 13. № 6304. https://doi.org/10.1038/s41467-022-33835-3
- Arnott J. Practical Illustrations of the Treatment of the Principal Varieties of Headache by the Local Application of Benumbing Cold: With Remarks on the Remedial and Anesthetic Uses of Congelation in Diseases of the Skin and Surgical Operations. London: Churchill, 1849. 54 p.
- Ashina M., Hansen J.M., Do T.P. et al. Migraine and the trigeminovascular system-40 years and counting // Lancet Neurol. 2019. V. 18. № 8. P. 795–804. https://doi.org/10.1016/S1474-4422(19)30185-1
- Bagherzadi A., Emani R., Ghavami H., Khalkhali H.R., Ebrahimi M. Comparing the Effect of Heat and Cold Therapy on the Intensity of Nitrate Induced Migraine Type Headache in Cardiac Inpatients: A Randomized Controlled Trial // Agri. 2021. V. 33. № 3. P. 148–154. https://doi.org/10.14744/agri.2020.00907
- Benemei S., Dussor G. TRP Channels and Migraine: Recent Developments and New Therapeutic Opportunities // Pharmaceuticals (Basel). 2019. V. 12. № 2. 54. https://doi.org/10.3390/ph12020054
- Bharate S.S., Bharate S.B. Modulation of thermoreceptor TRPM8 by cooling compounds // ACS Chem. Neurosci. 2012. V. 3. № 4. P. 248–267. https://doi.org/10.1021/cn300006u
- Bonemazzi I., Pelizza M.F., Berti G. et al. Cold-Stimulus Headache in Children and Adolescents // Life (Basel). 2023. V. 13. № 4. 973. https://doi.org/10.3390/life13040973
- Borhani Haghighi A., Motazedian S., Rezaii R. et al. Cutaneous application of menthol 10% solution as an abortive treatment of migraine without aura: a randomised, double-blind, placebo-controlled, crossed-over study // Int. J. Clin. Pract. 2010. V. 64. № 4. P. 451–456. https://doi.org/10.1111/j.1742-1241.2009.02215.x
- Buoite Stella A., Filingeri D., Garascia G. et al. Skin wetness sensitivity across body sites commonly affected by pain in people with migraine // Headache. 2022. V. 62. № 6. P. 737–747. https://doi.org/10.1111/head.14323
- Burgos-Vega C.C., Ahn D.D., Bischoff C. et al. Meningeal transient receptor potential channel M8 activation causes cutaneous facial and hindpaw allodynia in a preclinical rodent model of headache // Cephalalgia. 2016. V. 36. № 2. P. 185–193. https://doi.org/10.1177/0333102415584313
- Chebini A., Dilli E. Cold Stimulus Headache // Curr. Neurol. Neurosci. Rep. 2019. V. 19. № 46. https://doi.org/10.1007/s11910-019-0956-5
- Citak A., Kilinc E., Torun I.E. et al. The effects of certain TRP channels and voltage-gated KCNQ/Kv7 channel opener retigabine on calcitonin gene-related peptide release in the trigeminovascular system // Cephalalgia. 2022. V. 42. № 13. P. 1375–1386. https://doi.org/10.1177/03331024221114773
- Cohen C.F., Roh J., Lee S.H., Park C.K., Berta T. Targeting Nociceptive Neurons and Transient Receptor Potential Channels for the Treatment of Migraine // Int. J. Mol. Sci. 2023. V. 24. № 9. 7897. https://doi.org/10.3390/ijms24097897
- Craighead D.H., McCartney N.B., Tumlinson J.H., Alexander L.M. Mechanisms and time course of menthol-induced cutaneous vasodilation // Microvasc. Res. 2017. V. 110. P. 43–47. https://doi.org/10.1016/j.mvr.2016.11.008
- De Oliveira D.A., Valença M.M. The characteristics of head pain in response to an experimental cold stimulus to the palate: An observational study of 414 volunteers // Cephalalgia. 2012. V. 32. № 15. P. 1123–1130. https://doi.org/10.1177/0333102412458075
- Demartini C., Greco R., Zanaboni A.M. et al. Nitroglycerin as a comparative experimental model of migraine pain: From animal to human and back // Prog. Neurobiol. 2019. V. 177. P. 15–32. https://doi.org/10.1016/j.pneurobio.2019.02.002
- Dillon G.A., Lichter Z.S., Alexander L.M. Menthol-induced activation of TRPM8 receptors increases cutaneous blood flow across the dermatome // Microvasc. Res. 2022. V. 139. № 104271. https://doi.org/10.1016/j.mvr.2021.104271
- Dussor G., Cao Y.Q. TRPM8 and Migraine // Headache. 2016. V. 56. № 9. P. 1406–1417. https://doi.org/10.1111/head.12948
- Dux M., Rosta J., Messlinger K. TRP Channels in the Focus of Trigeminal Nociceptor Sensitization Contributing to Primary Headaches // Int. J. Mol. Sci. 2020. V. 21. № 1. 342. https://doi.org/10.3390/ijms21010342
- Fedinec A.L., Liu J., Zhang R. et al. The cold receptor TRPM8 activation leads to attenuation of endothelium-dependent cerebral vascular functions during head cooling // J. Cereb. Blood Flow Metab. 2021. V. 41. № 11. P. 2897–2906. https://doi.org/10.1177/0271678X211018035
- Foralosso H.C., Lira J., Ramos J. et al. Cryotherapy in tension headache: Analysis of the frequency of symptoms // Neurol. Neurosci. Rep. 2019. V. 2. № 1. P. 1–4. https://doi.org/10.15761/NNR.1000116
- Friedman M.H., Peterson S.J., Behar C.F., Zaidi Z. Intraoral chilling versus oral sumatriptan for acute migraine // Heart Dis. 2001. V. 3. № 6. P. 357–361. https://doi.org/10.1097/00132580-200111000-00003
- Gavva N.R., Sandrock R., Arnold G.E. et al. Reduced TRPM8 expression underpins reduced migraine risk and attenuated cold pain sensation in humans // Sci. Rep. 2019. V. 9. № 19655. https://doi.org/10.1038/s41598-019-56295-0
- Headache Classification Committee of the International Headache Society. The International Classification of Headache Disorders, 3rd edition // Cephalalgia. 2018. V. 38. № 1. P. 1–211. https://doi.org/10.1177/0333102417738202
- Hensel O., Burow P., Mages S. et al. Increased Blood Flow Velocity in Middle Cerebral Artery and Headache Upon Ingestion of Ice Water // Front. Neurol. 2019. V. 10. № 677. https://doi.org/10.3389/fneur.2019.00677
- Hoffmann J., Lo H., Neeb L., Martus P., Reuter U. Weather sensitivity in migraineurs // J. Neurol. 2011. V. 258. P. 596–602. https://doi.org/10.1007/s00415-010-5798-7
- Horne D.B., Biswas K., Brown J. et al. Discovery of TRPM8 Antagonist (S)-6-(((3-Fluoro-4-(trifluoromethoxy)phenyl)(3-fluoropyridin-2-yl)methyl)carbamoyl)nicotinic Acid (AMG 333), a Clinical Candidate for the Treatment of Migraine // J. Med. Chem. 2018. V. 61. № 18. P. 8186–8201. https://doi.org/10.1021/acs.jmedchem.8b00518
- Iftinca M., Altier C. The cool things to know about TRPM8! // Channels (Austin). 2020. V. 14. № 1. P. 413–420. https://doi.org/10.1080/19336950.2020.1841419
- Izquierdo C., Martín-Martínez M., Gómez-Monterrey I., González-Muñiz R. TRPM8 Channels: Advances in Structural Studies and Pharmacological Modulation // Int. J. Mol. Sci. 2021. V. 22. № 16. 8502. https://doi.org/10.3390/ijms22168502
- Jahanfar F., Sadofsky L., Morice A., D’Amico M. Nebivolol as a Potent TRPM8 Channel Blocker: A Drug-Screening Approach through Automated Patch Clamping and Ligand-Based Virtual Screening // Membranes (Basel). 2022. V. 12. № 10. P. 954. https://doi.org/10.3390/membranes12100954
- Kayama Y., Shibata M., Takizawa T. et al. Functional interactions between transient receptor potential M8 and transient receptor potential V1 in the trigeminal system: Relevance to migraine pathophysiology // Cephalalgia. 2018. V. 38. № 5. P. 833–845. https://doi.org/10.1177/0333102417712719
- Klein A.H., Iodi Carstens M., McCluskey T.S. et al. Novel menthol-derived cooling compounds activate primary and second-order trigeminal sensory neurons and modulate lingual thermosensitivity // Chem. Senses. 2011. V. 36. № 7. P. 649–658. https://doi.org/10.1093/chemse/bjr029
- Knowlton W.M., Palkar R., Lippoldt E.K. et al. A sensory-labeled line for cold: TRPM8-expressing sensory neurons define the cellular basis for cold, cold pain, and cooling-mediated analgesia // J. Neurosci. 2013. V. 33. № 7. P. 2837–2848. https://doi.org/10.1523/JNEUROSCI.1943-12.2013
- Kraya T., Schulz-Ehlbeck M., Burow P., Watzke S., Zierz S. Prevalence and characteristics of headache attributed to ingestion or inhalation of a cold stimulus (HICS): A cross-sectional study // Cephalalgia. 2020. V. 40. № 3. P. 299–306. https://doi.org/10.1177/0333102419884938
- Kurose M., Meng I.D. Corneal dry-responsive neurons in the spinal trigeminal nucleus respond to innocuous cooling in the rat // J. Neurophysiol. 2013a. V. 109. №10. P. 2517–2522. https://doi.org/10.1152/jn.00889.2012
- Kurose M., Meng I.D. Dry eye modifies the thermal and menthol responses in rat corneal primary afferent cool cells // J. Neurophysiol. 2013b. V. 110. № 2. P. 495–504. https://doi.org/10.1152/jn.00222.2013
- Li Z., Zhang H., Wang Y. et al. The distinctive role of menthol in pain and analgesia: Mechanisms, practices, and advances // Front. Mol. Neurosci. 2022. V. 15. № 1006908. https://doi.org/10.3389/fnmol.2022.1006908
- Ling Y.H., Chen S.P., Fann C.S., Wang S.J., Wang Y.F. TRPM8 genetic variant is associated with chronic migraine and allodynia // J. Headache Pain. 2019. V. 20. № 115. https://doi.org/10.1186/s10194-019-1064-2
- Liu Y., Mikrani R., He Y. et al. TRPM8 channels: A review of distribution and clinical role // Eur. J. Pharmacol. 2020. V. 882. № 173312. https://doi.org/10.1016/j.ejphar.2020.173312
- Luo Y., Suttle A., Zhang Q., Wang P., Chen Y. Transient Receptor Potential (TRP) Ion Channels in Orofacial Pain // Mol. Neurobiol. 2021. V. 58. № 6. P. 2836–2850. https://doi.org/10.1007/s12035-021-02284-2
- Mages S., Hensel O., Zierz A.M., Kraya T., Zierz S. Experimental provocation of ‘ice-cream headache’ by ice cubes and ice water // Cephalalgia. 2017. V. 37. № 5. P. 464–469. https://doi.org/10.1177/0333102416650704
- Martín-Escura C., Medina-Peris A., Spear L.A. et al. β-Lactam TRPM8 Antagonist RGM8-51 Displays Antinociceptive Activity in Different Animal Models // Int. J. Mol. Sci. 2022. V. 23. № 5. P. 2692. https://doi.org/10.3390/ijms23052692.
- Mattsson P. Headache caused by drinking cold water is common and related to active migraine // Cephalalgia. 2001. V. 21. № 3. P. 230–235. https://doi.org/10.1046/j.1468-2982.2001.00211.x
- McKemy D.D., Neuhausser W.M., Julius D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation // Nature. 2002. V. 416. № 6876. P. 52–58. https://doi.org/10.1038/nature719
- Melanaphy D., Johnson C.D., Kustov M.V. et al. Ion channel mechanisms of rat tail artery contraction-relaxation by menthol involving, respectively, TRPM8 activation and L-type Ca2+ channel inhibition // Am. J. Physiol. Heart Circ. Physiol. 2016. V. 311. № 6. H1416–H1430. https://doi.org/10.1152/ajpheart.00222.2015
- Nisar A., Ahmed Z., Yuan H. Novel Therapeutic Targets for Migraine // Biomedicines. 2023. V. 11. № 2. 569. https://doi.org/10.3390/biomedicines11020569
- Oz M., El Nebrisi E.G., Yang K.S., Howarth F.C., Al Kury L.T. Cellular and Molecular Targets of Menthol Actions // Front. Pharmacol. 2017. V. 8. № 472. https://doi.org/10.3389/fphar.2017.00472
- Özyürek H., Koray Bayrak I., Yayici Köken Ö. Ice Cream Headache: Cerebral Blood Flow Evaluation // Turk. Arch. Pediatr. 2021. V. 56. № 4. P. 405–406. https://doi.org/10.5152/TurkArchPediatr.2021.20247
- Peier A.M., Moqrich A., Hergarden A.C. et al. A TRP channel that senses cold stimuli and menthol // Cell. 2002. V. 108. № 5. P. 705–715. https://doi.org/10.1016/s0092-8674(02)00652-9
- Rafieian-Kopaei M., Hasanpour-Dehkordi A., Lorigooini Z. et al. Comparing the Effect of Intranasal Lidocaine 4% with Peppermint Essential Oil Drop 1.5% on Migraine Attacks: A Double-Blind Clinical Trial // Int. J. Prev. Med. 2019. V. 10. P. 121. https://doi.org/10.4103/ijpvm.IJPVM_530_17
- Ren L., Dhaka A., Cao Y.Q. Function and postnatal changes of dural afferent fibers expressing TRPM8 channels // Mol. Pain. 2015. V. 11. № 37. https://doi.org/10.1186/s12990-015-0043-0
- Robbins A., Kurose M., Winterson B.J., Meng I.D. Menthol activation of corneal cool cells induces TRPM8-mediated lacrimation but not nociceptive responses in rodents // Invest. Ophthalmol. Vis. Sci. 2012. V. 53. № 11. P. 7034–7042. https://doi.org/10.1167/iovs.12-10025
- Rossi A., Caro G., Fortuna M.C. et al. Prevention and Treatment of Chemotherapy-Induced Alopecia // Dermatol. Pract. Concept. 2020. V. 10. № 3. e2020074. https://doi.org/10.5826/dpc.1003a74
- Selekler H.M., Erdogan M.S., Budak F. Prevalence and clinical characteristics of an experimental model of ‘ice-cream headache’ in migraine and episodic tension-type headache patients // Cephalalgia. 2004. V. 24. № 4. P. 293–297. https://doi.org/10.1111/j.1468-2982.2004.00674.x
- Shibata M., Tang C. Implications of Transient Receptor Potential Cation Channels in Migraine Pathophysiology // Neurosci. Bull. 2021. V. 37. № 1. P. 103–116. https://doi.org/10.1007/s12264-020-00569-5
- Silva D.F., de Almeida M.M., Chaves C.G. et al. TRPM8 Channel Activation Induced by Monoterpenoid Rotundifolone Underlies Mesenteric Artery Relaxation // PLoS One. 2015. V. 10. № 11. e0143171. https://doi.org/10.1371/journal.pone.0143171
- Silva D.F., Wenceslau C.F., Mccarthy C.G. et al. TRPM8 channel activation triggers relaxation of pudendal artery with increased sensitivity in the hypertensive rats // Pharmacol. Res. 2019. V. 147. № 104329. https://doi.org/10.1016/j.phrs.2019.104329
- Silva H. Current Knowledge on the Vascular Effects of Menthol // Front. Physiol. 2020. V. 11. № 298. https://doi.org/10.3389/fphys.2020.00298
- Singh R.K., Martinez A., Baxter P. Head cooling for exercise-induced headache // J. Child. Neurol. 2006. V. 21. № 12. P. 1067–1068. https://doi.org/10.1177/7010.2006.00227
- Siokas V., Liampas I., Aloizou A.M. et al. Deciphering the Role of the rs2651899, rs10166942, and rs11172113 Polymorphisms in Migraine: A Meta-Analysis // Medicina (Kaunas). 2022. V. 58. № 4. 491. https://doi.org/10.3390/medicina58040491
- Sleigh J.W. Ice cream headache. Cerebral vasoconstriction causing decrease in arterial flow may have role // BMJ. 1997. V. 315. № 7108. P. 609. https://doi.org/10.1136/bmj.315.7108.609a
- Sokolov A.Y., Mengal M., Berkovich R. Menthol dural application alters meningeal arteries tone and enhances excitability of trigeminocervical neurons in rats // Brain Res. 2024. V. 1825. № 148725. https://doi.org/10.1016/j.brainres.2023.148725
- Spekker E., Körtési T., Vécsei L. TRP Channels: Recent Development in Translational Research and Potential Therapeutic Targets in Migraine // Int. J. Mol. Sci. 2022. V. 24. № 1. 700. https://doi.org/10.3390/ijms24010700
- Sprouse-Blum A.S., Gabriel A.K., Brown J.P., Yee M.H. Randomized controlled trial: targeted neck cooling in the treatment of the migraine patient // Hawaii J. Med. Public Health. 2013. V. 72. № 7. P. 237–241.
- St Cyr A., Chen A., Bradley K.C. et al. Efficacy and Tolerability of STOPAIN for a Migraine Attack // Front. Neurol. 2015. V. 6. P. 11. https://doi.org/10.3389/fneur.2015.00011
- Ucler S., Coskun O., Inan L.E., Kanatli Y. Cold Therapy in Migraine Patients: Open-label, Non-controlled, Pilot Study // Evid. Based Complement Alternat. Med. 2006. V. 3. № 4. P. 489–493. https://doi.org/10.1093/ecam/nel035
- Uğurlu Y.K., Enç N. The effect of local cold compresses for nitroglycerin-induced headache: An observational pretest-posttest study // Nurs. Crit. Care. 2023. V. 28. № 6. P. 1097–1105. https://doi.org/10.1111/nicc.12823
- Vanderpol J., Bishop B., Matharu M., Glencorse M. Therapeutic effect of intranasal evaporative cooling in patients with migraine: a pilot study // J. Headache Pain. 2015. V. 16. № 5. https://doi.org/10.1186/1129-2377-16-5
- Vinuela-Fernandez I., Sun L., Jerina H. et al. The TRPM8 channel forms a complex with the 5-HT(1B) receptor and phospholipase D that amplifies its reversal of pain hypersensitivity // Neuropharmacology. 2014. V. 79. P. 136–151. https://doi.org/10.1016/j.neuropharm.2013.11.006
- Wei C., Kim B., McKemy D.D. Transient receptor potential melastatin 8 is required for nitroglycerin- and calcitonin gene-related peptide-induced migraine-like pain behaviors in mice // Pain. 2022. V. 163. № 12. P. 2380–2389. https://doi.org/10.1097/j.pain.0000000000002635
- Yang C., Yamaki S., Jung T. et al. Endogenous Inflammatory Mediators Produced by Injury Activate TRPV1 and TRPA1 Nociceptors to Induce Sexually Dimorphic Cold Pain That Is Dependent on TRPM8 and GFRα3 // J. Neurosci. 2023. V. 43. № 15. P. 2803–2814. https://doi.org/10.1523/JNEUROSCI.2303-22.2023
- Yin Y., Wu M., Zubcevic L. et al. Structure of the cold- and menthol-sensing ion channel TRPM8 // Science. 2018. V. 359. № 6372. P. 237–241. https://doi.org/10.1126/science.aan4325
- Zanotto K.L., Merrill A.W., Carstens M.I., Carstens E. Neurons in superficial trigeminal subnucleus caudalis responsive to oral cooling, menthol, and other irritant stimuli // J. Neurophysiol. 2007. V. 97. № 2. P. 966–978. https://doi.org/10.1152/jn.00996.2006
- Zhao C., Xie Y., Xu L. et al. Structures of a mammalian TRPM8 in closed state // Nat. Commun. 2022. V. 13. № 3113. https://doi.org/10.1038/s41467-022-30919-y
- Zierz A.M., Mehl T., Kraya T., Wienke A., Zierz S. Ice cream headache in students and family history of headache: a cross-sectional epidemiological study // J. Neurol. 2016. V. 263. № 6. P. 1106–1110. https://doi.org/10.1007/s00415-016-8098-z
- Zong G.F., Deng R., Yu S.Y. et al. Thermo-Transient Receptor Potential Channels: Therapeutic Potential in Gastric Cancer // Int. J. Mol. Sci. 2022. V. 23. № 23. P. 15289. https://doi.org/10.3390/ijms232315289
补充文件
