Аутофагия в нервной системе: общие принципы и специфические функции
- Авторы: Чурилова А.В.1
-
Учреждения:
- Федеральное государственное бюджетное учреждение науки Институт физиологии им. И.П. Павлова РАН
- Выпуск: Том 55, № 3 (2024)
- Страницы: 75-93
- Раздел: Статьи
- URL: https://permmedjournal.ru/0301-1798/article/view/676215
- DOI: https://doi.org/10.31857/S0301179824030056
- EDN: https://elibrary.ru/BBDSQB
- ID: 676215
Цитировать
Аннотация
Аутофагия – внутриклеточный механизм изоляции, транспорта и деградации макромолекул и органелл. Физиологическое значение аутофагии заключается, во-первых, в поддержании постоянства внутриклеточной среды за счет своевременной утилизации белков с нарушенной структурой и поврежденных органелл. Во-вторых, за счет избирательной деградации макромолекул аутофагия поставляет клетке мономеры, которые далее используются ею для синтеза новых соединений, что служит для обеспечения перестройки клеточного метаболизма в процессах клеточной дифференциации, онтогенеза и адаптации к действию факторов внешней среды. Аутофагия является исключительно важным механизмом для поддержания нормального функционирования постмитотических и дифференцированных клеток, в том числе нейронов. Нарушения аутофагии в нейронах приводят к формированию белковых конгломератов, накоплению поврежденных клеточных органелл, дегенерации нервных волокон и гибели клеток, что часто наблюдается при развитии некоторых форм нейродегенеративных заболеваний. Кроме того, установлена роль аутофагии в реализации синаптической пластичности и механизмах памяти. Поскольку аутофагия оказывает существенное влияние на клеточный метаболизм, исследование регуляции и основных путей реализации этого механизма может иметь решающее значение в поиске средств и подходов в лечении и профилактике многих патологий, прогрессирующих с возрастом. В данном обзоре описаны основные понятия процесса аутофагии, обобщены ключевые функции аутофагии в клетках, а также представлены современные данные о ее роли в обеспечении нормального метаболизма и реализации специфических функций нейронов.
Ключевые слова
Полный текст

Об авторах
А. В. Чурилова
Федеральное государственное бюджетное учреждение науки Институт физиологии им. И.П. Павлова РАН
Автор, ответственный за переписку.
Email: churilovaav@infran.ru
Россия, 199034, Санкт-Петербург
Список литературы
- Баранова К.А., Зенько М.Ю. Анксиолитический эффект дистантного ишемического пре- и посткондиционирования в модели посттравматического стрессового расстройства //Ж. выс. нерв. деят. 2018. Т. 68. № 5. С. 663–672.
- Ватаева Л.А., Тюлькова Е.И., Самойлов М.О. Влияние предварительного воздействия умеренной гипоксии на нарушения выработки и воспроизведения условной реакции пассивного избегания, вызываемые тяжелой гипобарической гипоксией у крыс // Ж. высш. нерв.деят. 2004. Т. 54. № 6. С. 795–801.
- Зенько М.Ю., Рыбникова Е.А. Перекрестная адаптация: от Ф.З. Меерсона до наших дней. Часть 1. Адаптация, перекрестная адаптация и перекрестная сенсибилизация // Ж. успехи физиол. наук. 2019. Т. 50. № 4. С. 3–13. doi: 10.1134/S0301179819040088
- Зенько М.Ю., Рыбникова Е.А. Гипоксическая адаптация и тренировка: исторические, биомедицинские и спортивные аспекты // Авиакосмич. и экологич. медицина. 2021. Т. 55. № 1. С. 20–26. doi: 10.21687/0233-528X-2021-55-1-20-26.
- Меерсон Ф.З. Адаптационная медицина: механизмы и защитные эффекты адаптации. М.: Hypoxia Medical LTD, 1993. 331 с.
- Самойлов М.О., Рыбникова Е.А., Чурилова А.В. Сигнальные молекулярные и гормональные механизмы формирования протективных эффектов гипоксического прекондиционирования // Пат. физиол. и эксп. терапия. 2012. № 3. С. 3–10.
- Чурилова А.В., Глущенко Т.С., Самойлов М.О. Изменение экспрессии антиапоптотического белка Bcl-2 в неокортексе и гиппокампе у крыс под влиянием различных режимов гипобарической гипоксии // Морфология. 2014. Т. 146. № 5. С. 7–13.
- Abel T., Klann E. Molecular and cellular cognition: neurobiology of learning and memory special issue 2013 // Neurobiol. Learn. Mem. 2013. V. 105. P. 1–2. doi: 10.1016/j.nlm.2013.08.005
- Adhami F., Liao G., Morozov Y.M. et al. Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy // Am. J. Pathol. 2006. V. 169. № 2. P. 566–583. doi: 10.2353/ajpath.2006.051066
- Alberini C.M., Kandel E.R. The regulation of transcription in memory consolidation // Cold Spring Harb. Perspect. Biol. 2015. V. 7. a021741.doi: 10.1101/cshperspect.a021741
- Alfaro I.E., Albornoz A., Molina A. et al. Chaperone mediated autophagy in the crosstalk of neurodegenerative diseases and metabolic disorders // Front. Endocrinol. 2018. V. 9. P. 778. doi: 10.3389/fendo.2018.00778
- Alirezaei M., Kemball C.C., Flynn C.T. et al. Short-term fasting induces profoundneuronal autophagy // Autophagy. 2010. V. 6. P. 702–710. doi: 10.4161/auto.6.6.12376
- Baehrecke E.H. Autophagy: dual roles in life and death? // Nat. Rev. Mol. Cell Biol. 2005. V. 6. P. 505–510.
- Bailey C.H., Kandel E.R., Harris K.M. Structural Components of Synaptic Plasticity and Memory Consolidation // Cold Spring Harb. Perspect. Biol. 2015. V. 7. 7:a021758. doi: 10.1101/cshperspect.a021758
- Bekinschtein P., Katche C., Slipczuk L.N. et al. mTOR signaling in the hippocampus is necessary for memory formation // Neurobiol. Learn Mem. 2007. V. 87. P. 303–307.
- Bence N.F., Sampat R.M., Kopito R.R. Impairment of the ubiquitin-proteasome system by protein aggregation // Science. 2001. V. 292. P. 1552–1555. doi: 10.1126/science.292.5521.1552
- Bhaskar P.T., Hay N. The two TORCs and Akt // Dev. Cell. 2007. V. 12. № 4. P. 487–502. doi: 10.1016/j.devcel.2007.03.020
- Bingol B., Sheng M. Deconstruction for reconstruction: the role of proteolysis in neural plasticity and disease // Neuron. 2011. V. 69. № 1. P. 22–32. doi: 10.1016/j.neuron.2010.11.006
- Bjørkøy G., Lamark T., Brech A. et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death // J. Cell Biol. 2005. V. 171. P. 603–614. doi: 10.1083/jcb.200507002
- Blundell J., Kouser M., Powell C.M. System icinhibition of mammalian target of rapamycin inhibits fear memory reconsolidation // Neurobiol. Learn Mem. 2008. V. 90. P. 28–35. doi: 10.1016/j.nlm.2007.12.004
- Boland B., Kumar A., Lee S. et al. Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease // J Neurosci. 2008. V. 28. № 27. P. 6926–6937. doi: 10.1523/JNEUROSCI.0800-08.2008
- Boland B., Yu W.H., Corti O. et al. Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing // Nat. Rev. Drug Discov. 2018. V. 17. № 9. P. 660–688. doi: 10.1038/nrd.2018.109
- Boya P., Gonzalez-Polo R.A., Casares N. et al. Inhibition of macroautophagy triggers apoptosis // Mol. Cell. Biol. 2005. V. 25. № 3. P. 1025–1040. doi: 10.1128/MCB.25.3.1025-1040.2005
- Carloni S., Buonocore G., Balduini W. Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury // Neurobiol. Dis. 2008. V. 32. № 3. P. 329–339. doi: 10.1016/j.nbd.2008.07.022
- Castillo K., Nassif M., Valenzuela V. et al. Trehalose delays the progression of amyotrophic lateral sclerosis by enhancing autophagy in motoneurons // Autophagy. 2013. V. 9. P. 1308–1320. doi: 10.4161/auto.25188
- Chen W., Sun Y., Liu K., Sun X. Autophagy: a double-edged sword for neuronal survival after cerebral ischemia // Neural Regen. Res. 2014.V. 9. № 12. P. 1210–1216. doi: 10.4103/1673-5374.135329
- Cheng X.T., Zhou B., Lin M.Y., Cai Q, Sheng Z.H. Axonal autophagosomes recruit dynein for retrograde transport through fusion with late endosomes // J. Cell Biol. 2015. V. 209. № 3. P. 377–386. doi: 10.1083/jcb.201412046
- Churilova A., Zachepilo T., Baranova K., Rybnikova E. Differences in the autophagy response to hypoxia in the hippocampus and neocortex of rats // Int. J. Mol. Sci. 2022. V. 23. № 14. 8002. doi: 10.3390/ijms23148002
- Ciechanover A., Kwon Y.T. Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies // Exp. Mol. Med. 2015. V. 47. № 3. e147. doi: 10.1038/emm.2014.117
- Ciechanover A. Intracellular protein degradation: From a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting // Best Pract. Res. Clin. Haematol. 2017. V. 30. № 4. P. 341–355. doi: 10.1016/j.beha.2017.09.001
- Clark S.G., Graybeal L.L., Id S.B. et al. Basal autophagy is required for promoting dendritic terminal branching in Drosophila sensory neurons // PLoS One. 2018. V. 13. № 11. e0206743. doi: 10.1371/journal.pone.0206743
- Conway O., Akpinar H.A., Rogov V.V., Kirkin V. Selective autophagy receptors in neuronal health and disease // J. Mol. Biol. 2020. V. 432. № 8. P. 2483–2509. doi: 10.1016/j.jmb.2019.10.013
- Cuervo A.M., Dice J.F. A receptor for the selective uptake and degradation of proteins by lysosomes // Science. 1996. V. 273. P. 501–503. doi: 10.1126/science.273.5274.501
- Cuervo A.M., Wong E. Chaperone-mediated autophagy: roles in disease and aging // Cell Res. 2014. V. 24. № 1. P. 92–104. doi: 10.1038/cr.2013.153
- De Duve C., Wattiaux R. Functions of lysosomes // Annu. Rev. Physiol. 1966. V. 28. P. 435–492. doi: 10.1146/annurev.ph.28.030166.002251
- De Risi M., Torromino G., Tufano M. et al. Mechanisms by which autophagy regulates memory capacity in ageing // Aging Cell. 2020. V. 19. № 9. e13189. doi: 10.1111/acel.13189
- Deretic V., Saitoh T., Akira S. Autophagy in infection, inflammation and immunity // Nat. Rev. Immunol. 2013. V. 13. № 10. P. 722–737. doi: 10.1038/nri3532
- Djajadikerta A., Keshri S., Pavel M. et al. Autophagy induction as a therapeutic strategy for neurodegenerative diseases // J. Mol. Biol. 2020. V. 432.№8. P. 2799–2821. doi: 10.1016/j.jmb.2019.12.035
- Dice J.F. Peptide sequences that target cytosolic proteins for lysosomal proteolysis // Trends Biochem. Sci. 1990. V. 15. № 8. P. 305–309. doi: 10.1016/0968-0004(90)90019-8
- Dong Z., Han H., Li H. et al. Long-term potentiation decay and memory loss are mediated by AMPAR endocytosis // J. Clin. Invest. 2015. V. 125. P. 234–247. doi: 10.1172/JCI77888
- Ebato C., Uchida T., Arakawa M. et al. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet // Cell Metab. 2008. V. 8. P. 325–332. doi: 10.1016/j.cmet.2008.08.009
- Ehlers M.D. Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting // Neuron. 2000. V. 28. P. 511–525 doi: 10.1016/s0896-6273(00)00129-x
- Feng Y., He D., Yao Z., Klionsky D.J. The machinery of macroautophagy // Cell Res. 2014. V. 24. № 1. P. 24–41 doi: 10.1038/cr.2013.168
- Fleming A., Noda T., Yoshimori T., Rubinsztein D.C. Chemical modulators of autophagy as biological probes and potential therapeutics // Nat. Chem. Biol. 2010. V. 7. P. 9–17. https://doi.org/10.1038/nchembio.500
- Fleming A., Bourdenx M., Fujimaki M. et al. The different autophagy degradation pathways and neurodegeneration // Neuron. 2022. V. 110. № 6. P. 935–966. doi: 10.1016/j.neuron.2022.01.017
- Friedman L.G., Lachenmayer M.L., Wang J. et al. Disrupted autophagy leads to dopaminergic axon and dendrite degeneration and promotes presynaptic accumulation of α-synuclein and LRRK2 in the brain // J. Neurosci. 2012. V. 32. № 22. P. 7585–7593. doi: 10.1523/JNEUROSCI.5809-11.2012
- Gafford G.M., Parsons R.G., Helmstetter F.J. Consolidation and reconsolidation of contextual fearmemory requires mammalian target of rapamycin-dependenttranslation in the dorsal hippocampus // Neuroscience. 2011. V. 182. P. 98–104. doi: 10.1016/j.neuroscience.2011.03.023
- Ginet V., Spiehlmann A., Rummel C. et al. Involvement of autophagy in hypoxic-excitotoxic neuronal death // Autophagy. 2014. V. 10. P. 846–860.
- Giordano S., Darley-Usmar V., Zhang J. Autophagy as an essential cellular antioxidant pathway in neurodegenerative disease // Redox Biol. 2013. V. 2. P. 82–90. doi: 10.1016/j.redox.2013.12.013
- Glatigny M., Moriceau S., Rivagorda M. et al. Autophagy is required for memory formation and reverses age-related memory decline // Curr Biol. 2019. V. 29. № 3. P. 435–448. doi: 10.1016/j.cub.2018.12.021
- Guo J.Y., Chen H.Y., Mathew R. et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis // Genes Dev. 2011. V. 25. P. 460–470. doi: 10.1101/gad.2016311
- Hara T., Nakamura K., Matsui M. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice // Nature. 2006. V. 441. P. 885–889. doi: 10.1038/nature04724
- Harnett M.M., Pineda M.A., Latré de Laté P. et al. From Christian de Duve to Yoshinori Ohsumi: More to autophagy than just dining at home // Biomed. J. 2017. V. 40. P. 9–22. doi: 10.1016/j.bj.2016.12.004
- Hartleben B., Gödel M., Meyer-Schwesinger C. et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice // J. Clin. Invest. 2010. V. 120. P. 1084–1096. doi: 10.1172/JCI39492
- Hegde A.N., Inokuchi K., Pei W. et al. Ubiquitin C-terminal hydrolase is an immediate-early gene essential for long-term facilitation in Aplysia // Cell. 1997. V. 89. P. 115–126. doi: 10.1016/s0092-8674(00)80188-9
- Hernandez D., Torres C.A., Setlik W. et al. Regulation of presynaptic neurotransmission by macroautophagy // Neuron. 2012. V. 74. P. 277–284. doi: 10.1016/j.neuron.2012.02.020
- Hirling H. Endosomal trafficking of AMPA-type glutamatereceptors // Neuroscience. 2009. V. 158. P. 36–44. doi: 10.1016/j.neuroscience.2008.02.057
- Hoffmann S., Orlando M., Andrzejak E. et al. Light-Activated ROS production induces synaptic autophagy // J. Neurosci. 2019. V. 39. P. 2163–2183. doi: 10.1523/JNEUROSCI.1317-18.2019
- Hylin M., Zhao J., Tangavelou K.T. et al. A role for autophagy in long-term spatial memory formation in male rodents // J. Neurosci Res. 2018. V. 96. № 3. P. 416–426. doi: 10.1002/jnr.24121
- Inami Y., Waguri S., Sakamoto A. et al. Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells // J. Cell Biol. 2011. V. 193. P. 275–284. doi: 10.1083/jcb.201102031
- Jobim P.F., Pedroso T.R., Christoff R.R. et al. Inhibition of mTOR by rapamycin in the amygdala or hippocampus impairs formation and reconsolidation of inhibitory avoidance memory // Neurobiol. Learn Mem. 2011. V. 97. P. 105–112. doi: 10.1016/j.nlm.2011.10.002
- Johansen T., Lamark T. Selective autophagy mediated by autophagic adapter proteins // Autophagy. 2011. V. 7. № 3. P. 279–296. doi: 10.4161/auto.7.3.14487
- Jung H.S., Chung K.W., Won Kim J.et al. Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia // Cell Metab. 2008. V. 8. P. 318–324. doi: 10.1016/j.cmet.2008.08.013
- Kallergi E., Daskalaki A.D., Kolaxi A. et al. Dendritic autophagy degrades postsynaptic proteins and is required for long-term synaptic depression in mice // Nat. Commun. 2022. V. 13. № 1. P. 680. doi: 10.1038/s41467-022-28301-z.
- Kamada Y., Funakoshi T., Shintani T. et al. Tor-mediated induction of autophagy via an Apg1 proteinkinase complex // J. Cell Biol. 2000. V. 150. № 6. P. 1507–1513. doi: 10.1083/jcb.150.6.1507
- Kaushik S., Rodriguez-Navarro J.A., Arias E. et al. Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance // Cell Metab. 2011. V. 14. P. 173–183. doi: 10.1016/j.cmet.2011.06.008
- Kessels H.W., Malinow R. Synaptic AMPA receptor plasticity and behavior // Neuron. 2009. V. 642. P. 340–350. doi: 10.1016/j.neuron.2009.01.015
- Kleele T., Marinkovic P., Williams P.R. et al. Anassay to image neuronal microtubule dynamics in mice // Nat. Commun. 2014. V. 5. № 4827. doi: 10.1038/ncomms5827
- Klionsky D.J., Emr S.D. Autophagy as a regulated pathway of cellular degradation // Science. 2000. V. 290. № 5497. P. 1717–1721. doi: 10.1126/science.290.5497.1717
- Klionsky D.J., Cregg J.M., Dunn Jr W.A. et al. A unified nomenclature for yeast autophagy-related genes // Dev. Cell. 2003. V. 5. № 4. P. 539–545. doi: 10.1016/s1534-5807(03)00296-x
- Klionsky D.J., Petroni G., Amaravadi R.K. et al. Autophagy in major human diseases // EMBO J. 2021. V. 40. № 19. e108863. doi: 10.15252/embj.2021108863
- Koike M., Shibata M., Tadakoshi M. et al. Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic/ischemic injury // Am. J. Pathol. 2008. V. 172. № 2. P. 454–469. doi: 10.2353/ajpath.2008.070876
- Komatsu M., Waguri S., Ueno T. et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice // J. Cell Biol. 2005. V. 169. № 3. P. 425–434. doi: 10.1083/jcb.200412022
- Komatsu M., Waguri S., Chiba T. et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice // Nature. 2006. V. 441. P. 880–884. doi: 10.1038/nature04723
- Komatsu M., Wang Q.J., Holstein G.R. et al. Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration // Proc. Natl. Acad. Sci. USA. 2007. V. 104. P. 14489–14494. doi: 10.1073/pnas.0701311104
- Komatsu M., Waguri S., Koike M. et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice // Cell. 2007. V. 131. P. 1149–1163. doi: 10.1016/j.cell.2007.10.035
- Kononenko N.L., Classen G.A., Kuijpers M. et al. Retrograde transport of TrkB-containing autophagosomes via the adaptor AP-2 mediates neuronal complexity and prevents neurodegeneration // Nat Commun. 2017. V. 8. 14819. doi: 10.1038/ncomms14819
- Ktistakis N.T. In praise of M. Anselmier who first used the term “autophagie” in 1859 // Autophagy. 2017. V. 13. P. 2015–2017. doi: 10.1080/15548627.2017.1367473
- Kuijpers M., Kochlamazashvili G., Stumpf A. et al. Neuronal autophagy regulates presynaptic neurotransmission by controlling the axonal endoplasmic reticulum // Neuron. 2021. V. 109. P. 299–313. doi: 10.1016/j.neuron.2020.10.005
- Lee S.H., Simonetta A., Sheng M. Subunit rules governing the sorting of internalized AMPA receptors in hippocampal neurons // Neuron. 2004. V. 43. P. 221–236. doi: 10.1016/j.neuron.2004.06.015
- Lee S., Sato Y., Nixon R.A. Lysosomal proteolysis inhibition selectively disrupts axonal transport of degradative organelles and causes an Alzheimer’s-like axonal dystrophy // J. Neurosci. 2011. V. 31. P. 7817–7830. doi: 10.1523/JNEUROSCI.6412-10.2011
- Lee J., Giordano S., Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling // Biochem. J. 2012. V. 441. P. 523–540. doi: 10.1042/BJ20111451
- Lee Y.K., Lee J.A. Role of the mammalian ATG8/LC3 family in autophagy: differential and compensatory roles in the spatiotemporal regulation of autophagy // BMB Rep. 2016. V. 49. № 8. P. 424–430. doi: 10.5483/BMBRep.2016.49.8.081
- Levine B., Kroemer G. Biological functions of autophagy genes: adisease perspective // Cell. 2019. V. 176. № 1–2. P. 11–42. doi: 10.1016/j.cell.2018.09.048
- Li Y., Meloni E.G., Carlezon W.A. et al. Learning and reconsolidation implicate different synaptic mechanisms // Proc. Natl. Acad. Sci. USA. 2013. V. 110. P. 4798–4803. doi: 10.1073/pnas.1217878110
- Li H., Wu J., Shen H. et al. Autophagy in hemorrhagic stroke: mechanisms and clinical implications // Prog. Neurobiol. 2018. V. 16. P. 79–97. doi: 10.1016/j.pneurobio.2017.04.002
- Lieberman O.J., Sulzer D. The synaptic autophagy cycle // J. Mol. Biol. 2020.V. 432. №8. P. 2589–2604. doi: 10.1016/j.jmb.2019.12.028
- Liu J., Xia H., Kim M. et al. Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13 // Cell. 2011. V. 147. P. 223–234. doi: 10.1016/j.cell.2011.08.037
- Liu Y., Xue X., Zhang H. et al. Neuronal-targeted TFEB rescues dysfunction of the autophagy-lysosomal pathway and alleviates ischemic injury in permanent cerebral ischemia // Autophagy. 2019. V. 15. № 3. P. 493–509. doi: 10.1080/15548627.2018.1531196
- Luningschror P., Sendtner M. Autophagy in the presynaptic compartment // Curr. Opin. Neurobiol. 2018. V. 51. P. 80–85. doi: 10.1016/j.conb.2018.02.023
- Maday S., Wallace K.E., Holzbaur E.L. Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons // J. Cell Biol. 2012. V. 196. № 4. P. 407–417. doi: 10.1083/jcb.201106120
- Maday S., Holzbaur E.L. Autophagosome biogenesis in primaryneurons follows an ordered and spatially regulated pathway // Dev. Cell. 2014. V. 30. P. 71–85. doi: 10.1016/j.devcel.2014.06.001
- Maday S., Holzbaur E.L. Compartment-specific regulation ofautophagy in primary neurons // J. Neurosci. 2016. V. 36. P. 5933–5945. doi: 10.1523/JNEUROSCI.4401-15.2016
- Maglione M., Kochlamazashvili G., Eisenberg T. et al. Spermidine protects from age-related synaptic alterations at hippocampal mossy fiber-CA3 synapses // Sci. Rep. 2019. V. 9. № 1. 19616. doi: 10.1038/s41598-019-56133-3
- Mariño G., Niso-Santano M., Baehrecke E.H., Kroemer G. Self-consumption: the interplay of autophagy and apoptosis // Nat. Rev. Mol. Cell Biol. 2014. V. 15. P. 81–94. doi: 10.1038/nrm3735
- Masiero E., Agatea L., Mammucari C. et al. Autophagy is required to maintain muscle mass // Cell Metab. 2009. V. 10. P. 507–515. doi: 10.1016/j.cmet.2009.10.008
- Mayford M., Siegelbaum S.A., Kandel E.R. Synapses and memory storage // Cold Spring Harb Perspect. Biol. 2012. V. 4. № 6. a005751. doi: 10.1101/cshperspect.a005751
- Menzies F.M., Fleming A., Caricasole A. et al. Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities // Neuron. 2017. V. 93. P. 1015–1034. doi: 10.1016/j.neuron.2017.01.022
- Migues P.V., Liu L., Archbold G.E. et al. Blocking synaptic removal of GluA2-containing AMPA receptors prevents the natural forgetting of long-term memories // J. Neurosci. 2016. V. 36. P. 3481–3494. doi: 10.1523/JNEUROSCI.3333-15.2016
- Mizushima N., Yamamoto A., Matsui M., Yoshimori T., Ohsumi Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker // Mol. Biol. Cell. 2004. V. 15. № 3. P. 1101–1111. doi: 10.1091/mbc.e03-09-0704
- Mizushima N., Yoshimori T., Levine B. Methods in mammalian autophagy research // Cell. 2010. V. 140. P. 313–326. doi: 10.1016/j.cell.2010.01.028
- Mizushima N., Komatsu M. Autophagy: renovation of cells and tissues // Cell. 2011. V. 147. P. 728–741. doi: 10.1016/j.cell.2011.10.026
- Mizushima N., Yoshimori T., Ohsumi Y. The role of Atg proteins in autophagosome formation // Annu. Rev. Cell Dev. Biol. 2011. V. 27. P. 107–132. doi: 10.1146/annurev-cellbio-092910-154005
- Mizushima N. A brief history of autophagy from cell biology to physiology and disease // Nat. Cell Biol. 2018. V. 20. № 5. P. 521–527. doi: 10.1038/s41556-018-0092-5
- Mo Y., Sun Y.Y., Liu K.Y. Autophagy and inflammation in ischemic stroke // Neural Regen. Res. 2020. V. 15. № 8. P. 1388–1396. doi: 10.4103/1673-5374.274331
- Nakai A., Yamaguchi O., Takeda T. et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress // Nat. Med. 2007. V. 13. P. 619–624. doi: 10.1038/nm1574
- Nakatogawa H., Suzuki K., Kamada Y., Ohsumi Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast // Nat. Rev. Mol. Cell Biol. 2009. V. 10. № 7. P. 458–467. doi: 10.1038/nrm2708
- Nguyen T.N., Padman B.S., Lazarou M. Deciphering the molecular signals of PINK1/Parkin mitophagy // Trends Cell Biol. 2016. V. 26. P. 733–744. doi: 10.1016/j.tcb.2016.05.008
- Nikoletopoulou V., Markaki M., Palikaras K., Tavernarakis N. Crosstalk between apoptosis, necrosis and autophagy // Biochim. Biophys. Acta. 2013. V. 1833. P. 3448–3459. doi: 10.1016/j.bbamcr.2013.06.001
- Nikoletopoulou V., Sidiropoulou K., Kallergi E., Dalezios Y., Tavernarakis N. Modulation of autophagy by BDNF underlies synaptic plasticity // Cell Metab. 2017. V. 26. P. 230–242. doi: 10.1016/j.cmet.2017.06.005
- Nixon R.A., Yang D.S., Lee J.H. Neurodegenerative lysosomal disorders: a continuum from development to late age // Autophagy. 2008. V. 4. № 5. P. 590–599. doi: 10.4161/auto.6259
- Onodera J., Ohsumi Y. Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation // J. Biol. Chem. 2005. V. 280. № 36. P. 31582–31586. doi: 10.1074/jbc.M506736200
- Ozcelik S., Fraser G., Castets P. et al. Rapamycin attenuates the progression of tau pathology in P301S tau transgenic mice // PLoS One. 2013. V. 8. № 5. e62459. doi: 10.1371/journal.pone.0062459
- Pandey K., Yu X., Steinmetz A., Alberini C. Autophagy coupled to translation is required for long-term memory // Autophagy. 2020. V. 17. № 7. P. 1614–1635. doi: 10.1080/15548627.2020.1775393
- Park H., Poo M.M. Neurotrophin regulation of neural circuit development and function // Nat. Rev. Neurosci. 2013. V. 14. № 1. P. 7–23. doi: 10.1038/nrn3379
- Parsons R.G., Gafford G.M., Helmstetter F.J. Translational control via the mammalian target of rapamycin pathway is critical for the formation and stability of long-term fear memory in amygdala neurons // J. Neurosci. 2006. V. 26. № 50. P. 12977–12983. doi: 10.1523/JNEUROSCI.4209-06.2006
- Pattingre S., Espert L., Biard-Piechaczyk M., Codogno P. Regulation of macroautophagy by mTOR and Beclin 1 complexes // Biochimie. 2008. V. 90. № 2. P. 313–323. doi: 10.1016/j.biochi.2007.08.014
- Pitman R.K. Will reconsolidation blockade offer a novel treatment for posttraumatic stress disorder? // Front. Behav. Neurosci. 2011. V. 5. № 11. doi: 10.3389/fnbeh.2011.00011
- Puyal J., Vaslin A., Mottier V., Clarke P.G. Postischemic treatment of neonatal cerebral ischemia should target autophagy // Ann. Neurol. 2009. V. 66. № 3. P. 378–389. doi: 10.1002/ana.21714
- Quirk G.J., Mueller D. Neural mechanisms of extinction learning and retrieval // Neuropsychopharmacology. 2008. V. 33. № 1. P. 56–72. doi: 10.1038/sj.npp.1301555
- Raben N., Hill V., Shea L. et al. Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease // Hum. Mol. Genet. 2008. V. 17. № 24. P. 3897–3908. doi: 10.1093/hmg/ddn292
- Rami A., Kögel D. Apoptosis meets autophagy-like cell death in the ischemic penumbra: Two sides of the same coin? // Autophagy. 2008. V. 4. № 4. P. 422–426. doi: 10.4161/auto.5778
- Rami A., Langhagen A., Steiger S. Focal cerebral ischemia induces upregulation of Beclin 1 and autophagy-like cell death // Neurobiol. 2008. V. 29. P. 132–141. doi: 10.1016/j.nbd.2007.08.005
- Ravikumar B., Vacher C., Berger Z. et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease // Nat. Genet. 2004. V. 36. № 6. P. 585–595. doi: 10.1038/ng1362
- Ravikumar B., Moreau K., Jahreiss L., Puri C., Rubinsztein D.C. Plasma membrane contributes to the formation of pre-autophagosomal structures // Nat. Cell Biol. 2010. V. 12. № 8. P. 747–757. doi: 10.1038/ncb2078
- Rodríguez-Navarro J.A., Rodríguez L., Casarejos M.J. et al. Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation // Neurobiol. Dis. 2010. V. 39. № 3. P. 423–438. doi: 10.1016/j.nbd.2010.05.014
- Rowland A.M., Richmond J.E., Olsen J.G., Hall D.H., Bamber B.A. Presynaptic terminals independently regulate synaptic clustering and autophagy of GABAA receptors in Caenorhabditis elegans // J. Neurosci. 2006. V. 26. P. 1711–1720.doi: 10.1523/JNEUROSCI.2279-05.2006
- Rubinsztein D.C., Shpilka T., Elazar Z. Mechanisms of autophagosome biogenesis // Curr. Biol. 2012. V. 22. № 1. P. 29–34. doi: 10.1016/j.cub.2011.11.034
- Russell R.C., Tian Y., Yuan H. et al. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase // Nat. Cell Biol. 2013. V. 15. № 7. P. 741–750. doi: 10.1038/ncb2757
- Rybnikova E., Samoilov M..Current insights into the molecular mechanisms of hypoxic pre- and postconditioning using hypobaric hypoxia // Front. Neurosci. 2015. V. 9. № 388. doi: 10.3389/fnins.2015.00388
- Rybnikova E., Nalivaeva N. Glucocorticoid-dependent mechanisms of brain tolerance to hypoxia // Int. J. Mol. Sci. 2021. V. 22. № 15. P. 7982. doi: 10.3390/ijms22157982
- Sainsbury A., Zhang L. Role of the arcuate nucleus of the hypothalamus in regulation of body weight during energy deficit // Mol. Cell Endocrinol. 2010. V. 316. № 2. P. 109–119. doi: 10.1016/j.mce.2009.09.025
- Sakai S., Shichita T. Inflammation and neural repair after ischemic brain injury // Neurochem. Int. 2019. V. 130. № 104316. doi: 10.1016/j.neuint.2018.10.013
- Samoilov M., Churilova A., Gluschenko T., Rybnikova E. Neocortical pCREB and BDNF expression under different modes of hypobaric hypoxia: role in brain hypoxic tolerance in rats // Acta Histochem. 2014. V. 116. № 5. P. 949–957. doi: 10.1016/j.acthis.2014.03.009
- Shehata M., Matsumura H., Okubo-Suzuki R., Ohkawa N., Inokuchi K. Neuronal stimulation induces autophagy in hippocampal neurons that is involved in AMPA receptor degradation after chemical long-term depression // J. Neurosci. 2012. V. 32. № 30. P. 10413–10422. doi: 10.1523/JNEUROSCI.4533-11.2012
- Shehata M., Inokuchi K. Does autophagy work in synaptic plasticity and memory? // Rev. Neurosci. 2014. V. 25. № 4. P. 543–557. doi: 10.1515/revneuro-2014-0002
- Shehata M., Abdou K., Choko K. et al. Autophagy enhances memory erasure through synaptic destabilization // J. Neurosci. 2018. V. 38. P. 3809–3822. doi: 10.1523/JNEUROSCI.3505-17.2018
- Shen W., Ganetzky B. Autophagy promotes synapse development in Drosophila // J. Cell Biol. 2009. V. 187. № 1. P. 71–79. doi: 10.1083/jcb.200907109
- Sheng R., Zhang L.S., Han R. et al. Autophagy activation is associated with neuroprotection in a rat model of focal cerebral ischemic preconditioning // Autophagy. 2010. V. 6. № 4. P. 482–494. doi: 10.4161/auto.6.4.11737
- Shepherd J.D., Huganir R.L. The cell biology of synaptic plasticity: AMPA receptor trafficking // Annu. Rev. Cell. Dev. Biol. 2007. V. 23. P. 613–643. doi: 10.1146/annurev.cellbio.23.090506.123516
- Shi R., Weng J., Zhao L. et al. Excessive autophagy contributes to neuron death in cerebral ischemia // CNS Neurosci. Ther. 2012. V. 18. № 3. P. 250–260. doi: 10.1111/j.1755-5949.2012.00295.x
- Sidibe D.K., Vogel M.C., Maday S. Organization of the autophagy pathway in neurons // Curr. Opin. Neurobiol. 2022. V. 75. № 102554. doi: 10.1016/j.conb.2022.102554
- Singh R. Autophagy and regulation of lipid metabolism // Results Probl, Cell Differ. 2010. V. 52. P. 35–46 doi: 10.1007/978-3-642-14426-4_4.
- Son J.H., Shim J.H., Kim K.H., Ha J.Y., Han J.Y. Neuronal autophagy and neurodegenerative diseases // Exp. Mol. Med. 2012. V. 44. № 2. P. 89–98. doi: 10.3858/emm.2012.44.2.031
- Soukup S-F., Kuenen S., Vanhauwaert R. et al. A LRRK2-dependent endophilinA phosphoswitch is critical for macroautophagy at presynaptic terminals // Neuron. 2016. V. 92. P. 829–844. doi: 10.1016/j.neuron.2016.09.037
- Spruston N. Pyramidal neurons: dendritic structure and synaptic integration // Nat. Rev. Neurosci. 2008. V. 9. P. 206–221. https://doi.org/10.1038/nrn2286
- Stavoe A.K., Hill S.E., Hall D.H., Colon-Ramos D.A. KIF1A/UNC-104 transports ATG-9 to regulate neurodevelopment and autophagy at synapses // Dev. Cell. 2016. V. 38. P. 171–185. doi: 10.1016/j.devcel.2016.06.012
- Stoica L., Zhu P.J., Huang W. et al. Selective pharmacogenetic inhibition of mammalian target of Rapamycin complex I (mTORC1) blocks long-term synaptic plasticity and memory storage // Proc. Natl. Acad. Sci. USA. 2011. V. 108. № 9. P. 3791–3796. doi: 10.1073/pnas.1014715108
- Suzuki K., Ohsumi Y. Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae // FEBS Lett. 2007. V. 581. № 11. P. 2156–2161. doi: 10.1016/j.febslet.2007.01.096
- Suzuki S.W., Onodera J., Ohsumi Y. Starvation induced cell death in autophagy-defective yeast mutants is caused by mitochondria dysfunction // PLoS One. 2011. V. 6. № 2. e17412. doi: 10.1371/journal.pone.0017412
- Takamura A., Komatsu M., Hara T. et al. Autophagy-deficient mice develop multiple liver tumors // Genes Dev. 2011. V. 25. № 8. P. 795–800. doi: 10.1101/gad.2016211
- Takeshige K., Baba M., Tsuboi S., Noda T., Ohsumi Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction // J. Cell Biol. 1992. V. 119. № 2. P. 301–311. doi: 10.1083/jcb.119.2.301
- Tang G., Gudsnuk K., Kuo S.H. et al. Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits // Neuron. 2014. V. 83. № 5. P 1131–1143. doi: 10.1016/j.neuron.2014.07.040.
- Tooze S.A., Yoshimori T. The origin of the autophagosomal membrane // Nat. Cell Biol. 2010. V. 12. № 9. P. 831–835. doi: 10.1038/ncb0910-831
- Tsukada M., Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae // FEBS Lett. 1993. V. 333. № 1–2. P. 169–174. doi: 10.1016/0014-5793(93)80398-e
- Wang T., Martin S., Papadopulos A. et al. Control of autophagosome axonal retrograde flux by presynaptic activity unveiled using botulinum neurotoxin type A // J. Neurosci. 2015. V. 35. № 15. P. 6179–6194. doi: 10.1523/JNEUROSCI.3757-14.2015
- Wei Y., Liu M., Li X., Liu J., Li H. Origin of the autophagosome membrane in mammals // Biomed. Res. Int. 2018. V. 2018. № 1012789. doi: 10.1155/2018/1012789
- Wullschleger S., Loewith R., Hall M.N. TOR signaling in growth and metabolism // Cell. 2006. V. 124. № 3. P. 471–484. doi: 10.1016/j.cell.2006.01.016
- Yan J., Porch M.W., Court-Vazquez B., Bennett M.V.L., Zukin R.S. Activation of autophagy rescues synaptic and cognitive deficits in fragile X mice // Proc. Natl. Acad. Sci. USA. 2018. V. 115. № 41. P. E9707–E9716. doi: 10.1073/pnas.1808247115
- Yang Y., Coleman M., Zhang L., Zheng X., Yue Z. Autophagy in axonal and dendritic degeneration // Trends Neurosci. 2013. V. 36. № 7. P. 418–428. doi: 10.1016/j.tins.2013.04.001
- Yang Z., Lin P., Chen B. et al. Autophagy alleviates hypoxia-induced blood-brain barrier injury via regulation of CLDN5 (claudin 5) // Autophagy. 2021. V. 17. № 10. P. 3048–3067. doi: 10.1080/15548627.2020.1851897
- Yang S., Park D., Manning L. et al. Presynaptic autophagy is coupled to the synaptic vesicle cycle via ATG-9 // Neuron. 2022. V. 110. № 5. P. 824–840.e10. doi: 10.1016/j.neuron.2021.12.031
- Young J.E., Martinez R.A., La Spada A.R. Nutrient deprivation induces neuronal autophagy and implicates reduced insulin signaling in neuroprotective autophagy activation // J. Biol. Chem. 2009. V. 284. № 4. P. 2363–2373. doi: 10.1074/jbc.M806088200
- Zhang J. Autophagy and mitophagy in cellular damage control // Redox Biol. 2013. V. 1. № 1. P. 19–23. doi: 10.1016/j.redox.2012.11.008
- Zhang X., Yan H., Yuan Y. et al. Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance // Autophagy. 2013. V. 9. № 9. P. 1321–1333. doi: 10.4161/auto.25132
- Zweifel L.S., Kuruvilla R., Ginty D.D. Functions and mechanisms of retrograde neurotrophin signalling // Nat. Rev. Neurosci. 2005. V. 6. № 8. P. 615–625. doi: 10.1038/nrn1727
Дополнительные файлы
