Autophagy in the nervous system: general principles and specific functions
- Authors: Churilova A.V.1
-
Affiliations:
- Pavlov Institute of Physiology of the Russian Academy of Sciences
- Issue: Vol 55, No 3 (2024)
- Pages: 75-93
- Section: Articles
- URL: https://permmedjournal.ru/0301-1798/article/view/676215
- DOI: https://doi.org/10.31857/S0301179824030056
- EDN: https://elibrary.ru/BBDSQB
- ID: 676215
Cite item
Abstract
Autophagy is an intracellular mechanism for the isolation, transport and degradation of macromolecules and organelles. The physiological significance of autophagy lies, firstly, in maintaining the constancy of the intracellular environment through the timely disposal of proteins with a disrupted structure and damaged organelles. Secondly, due to the selective degradation of macromolecules, autophagy supplies the cell with monomers, which are then used by it to synthesize new compounds, which serves to ensure the rearrangement of cellular metabolism in the processes of cell differentiation, ontogenesis and adaptation to environmental challenges. Autophagy is an extremely important mechanism for maintaining normal functioning of postmitotic and differentiated cells, including neurons. Impaired neuronal autophagy leads to the formation of aggregated protein plaques, the accumulation of damaged cellular organelles, defects in the structure of processes and neuronal degeneration, which often accompanies to the progression of some forms of neurodegenerative diseases. In addition, the role of autophagy in synaptic plasticity and memory mechanisms has been established. Since autophagy has a significant impact on cellular metabolism, the study of the regulation and main pathways of this mechanism may be crucial in the elaboration of means and approaches to the treatment and prevention of many pathologies that progress with age. This review describes the basic concepts of the autophagy process, summarizes the key functions of autophagy in cells, and also presents current data on its role in ensuring the normal metabolism and implementation of specific functions of neurons.
Keywords
Full Text

About the authors
A. V. Churilova
Pavlov Institute of Physiology of the Russian Academy of Sciences
Author for correspondence.
Email: churilovaav@infran.ru
Russian Federation, 199034, St. Petersburg
References
- Баранова К.А., Зенько М.Ю. Анксиолитический эффект дистантного ишемического пре- и посткондиционирования в модели посттравматического стрессового расстройства //Ж. выс. нерв. деят. 2018. Т. 68. № 5. С. 663–672.
- Ватаева Л.А., Тюлькова Е.И., Самойлов М.О. Влияние предварительного воздействия умеренной гипоксии на нарушения выработки и воспроизведения условной реакции пассивного избегания, вызываемые тяжелой гипобарической гипоксией у крыс // Ж. высш. нерв.деят. 2004. Т. 54. № 6. С. 795–801.
- Зенько М.Ю., Рыбникова Е.А. Перекрестная адаптация: от Ф.З. Меерсона до наших дней. Часть 1. Адаптация, перекрестная адаптация и перекрестная сенсибилизация // Ж. успехи физиол. наук. 2019. Т. 50. № 4. С. 3–13. doi: 10.1134/S0301179819040088
- Зенько М.Ю., Рыбникова Е.А. Гипоксическая адаптация и тренировка: исторические, биомедицинские и спортивные аспекты // Авиакосмич. и экологич. медицина. 2021. Т. 55. № 1. С. 20–26. doi: 10.21687/0233-528X-2021-55-1-20-26.
- Меерсон Ф.З. Адаптационная медицина: механизмы и защитные эффекты адаптации. М.: Hypoxia Medical LTD, 1993. 331 с.
- Самойлов М.О., Рыбникова Е.А., Чурилова А.В. Сигнальные молекулярные и гормональные механизмы формирования протективных эффектов гипоксического прекондиционирования // Пат. физиол. и эксп. терапия. 2012. № 3. С. 3–10.
- Чурилова А.В., Глущенко Т.С., Самойлов М.О. Изменение экспрессии антиапоптотического белка Bcl-2 в неокортексе и гиппокампе у крыс под влиянием различных режимов гипобарической гипоксии // Морфология. 2014. Т. 146. № 5. С. 7–13.
- Abel T., Klann E. Molecular and cellular cognition: neurobiology of learning and memory special issue 2013 // Neurobiol. Learn. Mem. 2013. V. 105. P. 1–2. doi: 10.1016/j.nlm.2013.08.005
- Adhami F., Liao G., Morozov Y.M. et al. Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy // Am. J. Pathol. 2006. V. 169. № 2. P. 566–583. doi: 10.2353/ajpath.2006.051066
- Alberini C.M., Kandel E.R. The regulation of transcription in memory consolidation // Cold Spring Harb. Perspect. Biol. 2015. V. 7. a021741.doi: 10.1101/cshperspect.a021741
- Alfaro I.E., Albornoz A., Molina A. et al. Chaperone mediated autophagy in the crosstalk of neurodegenerative diseases and metabolic disorders // Front. Endocrinol. 2018. V. 9. P. 778. doi: 10.3389/fendo.2018.00778
- Alirezaei M., Kemball C.C., Flynn C.T. et al. Short-term fasting induces profoundneuronal autophagy // Autophagy. 2010. V. 6. P. 702–710. doi: 10.4161/auto.6.6.12376
- Baehrecke E.H. Autophagy: dual roles in life and death? // Nat. Rev. Mol. Cell Biol. 2005. V. 6. P. 505–510.
- Bailey C.H., Kandel E.R., Harris K.M. Structural Components of Synaptic Plasticity and Memory Consolidation // Cold Spring Harb. Perspect. Biol. 2015. V. 7. 7:a021758. doi: 10.1101/cshperspect.a021758
- Bekinschtein P., Katche C., Slipczuk L.N. et al. mTOR signaling in the hippocampus is necessary for memory formation // Neurobiol. Learn Mem. 2007. V. 87. P. 303–307.
- Bence N.F., Sampat R.M., Kopito R.R. Impairment of the ubiquitin-proteasome system by protein aggregation // Science. 2001. V. 292. P. 1552–1555. doi: 10.1126/science.292.5521.1552
- Bhaskar P.T., Hay N. The two TORCs and Akt // Dev. Cell. 2007. V. 12. № 4. P. 487–502. doi: 10.1016/j.devcel.2007.03.020
- Bingol B., Sheng M. Deconstruction for reconstruction: the role of proteolysis in neural plasticity and disease // Neuron. 2011. V. 69. № 1. P. 22–32. doi: 10.1016/j.neuron.2010.11.006
- Bjørkøy G., Lamark T., Brech A. et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death // J. Cell Biol. 2005. V. 171. P. 603–614. doi: 10.1083/jcb.200507002
- Blundell J., Kouser M., Powell C.M. System icinhibition of mammalian target of rapamycin inhibits fear memory reconsolidation // Neurobiol. Learn Mem. 2008. V. 90. P. 28–35. doi: 10.1016/j.nlm.2007.12.004
- Boland B., Kumar A., Lee S. et al. Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease // J Neurosci. 2008. V. 28. № 27. P. 6926–6937. doi: 10.1523/JNEUROSCI.0800-08.2008
- Boland B., Yu W.H., Corti O. et al. Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing // Nat. Rev. Drug Discov. 2018. V. 17. № 9. P. 660–688. doi: 10.1038/nrd.2018.109
- Boya P., Gonzalez-Polo R.A., Casares N. et al. Inhibition of macroautophagy triggers apoptosis // Mol. Cell. Biol. 2005. V. 25. № 3. P. 1025–1040. doi: 10.1128/MCB.25.3.1025-1040.2005
- Carloni S., Buonocore G., Balduini W. Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury // Neurobiol. Dis. 2008. V. 32. № 3. P. 329–339. doi: 10.1016/j.nbd.2008.07.022
- Castillo K., Nassif M., Valenzuela V. et al. Trehalose delays the progression of amyotrophic lateral sclerosis by enhancing autophagy in motoneurons // Autophagy. 2013. V. 9. P. 1308–1320. doi: 10.4161/auto.25188
- Chen W., Sun Y., Liu K., Sun X. Autophagy: a double-edged sword for neuronal survival after cerebral ischemia // Neural Regen. Res. 2014.V. 9. № 12. P. 1210–1216. doi: 10.4103/1673-5374.135329
- Cheng X.T., Zhou B., Lin M.Y., Cai Q, Sheng Z.H. Axonal autophagosomes recruit dynein for retrograde transport through fusion with late endosomes // J. Cell Biol. 2015. V. 209. № 3. P. 377–386. doi: 10.1083/jcb.201412046
- Churilova A., Zachepilo T., Baranova K., Rybnikova E. Differences in the autophagy response to hypoxia in the hippocampus and neocortex of rats // Int. J. Mol. Sci. 2022. V. 23. № 14. 8002. doi: 10.3390/ijms23148002
- Ciechanover A., Kwon Y.T. Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies // Exp. Mol. Med. 2015. V. 47. № 3. e147. doi: 10.1038/emm.2014.117
- Ciechanover A. Intracellular protein degradation: From a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting // Best Pract. Res. Clin. Haematol. 2017. V. 30. № 4. P. 341–355. doi: 10.1016/j.beha.2017.09.001
- Clark S.G., Graybeal L.L., Id S.B. et al. Basal autophagy is required for promoting dendritic terminal branching in Drosophila sensory neurons // PLoS One. 2018. V. 13. № 11. e0206743. doi: 10.1371/journal.pone.0206743
- Conway O., Akpinar H.A., Rogov V.V., Kirkin V. Selective autophagy receptors in neuronal health and disease // J. Mol. Biol. 2020. V. 432. № 8. P. 2483–2509. doi: 10.1016/j.jmb.2019.10.013
- Cuervo A.M., Dice J.F. A receptor for the selective uptake and degradation of proteins by lysosomes // Science. 1996. V. 273. P. 501–503. doi: 10.1126/science.273.5274.501
- Cuervo A.M., Wong E. Chaperone-mediated autophagy: roles in disease and aging // Cell Res. 2014. V. 24. № 1. P. 92–104. doi: 10.1038/cr.2013.153
- De Duve C., Wattiaux R. Functions of lysosomes // Annu. Rev. Physiol. 1966. V. 28. P. 435–492. doi: 10.1146/annurev.ph.28.030166.002251
- De Risi M., Torromino G., Tufano M. et al. Mechanisms by which autophagy regulates memory capacity in ageing // Aging Cell. 2020. V. 19. № 9. e13189. doi: 10.1111/acel.13189
- Deretic V., Saitoh T., Akira S. Autophagy in infection, inflammation and immunity // Nat. Rev. Immunol. 2013. V. 13. № 10. P. 722–737. doi: 10.1038/nri3532
- Djajadikerta A., Keshri S., Pavel M. et al. Autophagy induction as a therapeutic strategy for neurodegenerative diseases // J. Mol. Biol. 2020. V. 432.№8. P. 2799–2821. doi: 10.1016/j.jmb.2019.12.035
- Dice J.F. Peptide sequences that target cytosolic proteins for lysosomal proteolysis // Trends Biochem. Sci. 1990. V. 15. № 8. P. 305–309. doi: 10.1016/0968-0004(90)90019-8
- Dong Z., Han H., Li H. et al. Long-term potentiation decay and memory loss are mediated by AMPAR endocytosis // J. Clin. Invest. 2015. V. 125. P. 234–247. doi: 10.1172/JCI77888
- Ebato C., Uchida T., Arakawa M. et al. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet // Cell Metab. 2008. V. 8. P. 325–332. doi: 10.1016/j.cmet.2008.08.009
- Ehlers M.D. Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting // Neuron. 2000. V. 28. P. 511–525 doi: 10.1016/s0896-6273(00)00129-x
- Feng Y., He D., Yao Z., Klionsky D.J. The machinery of macroautophagy // Cell Res. 2014. V. 24. № 1. P. 24–41 doi: 10.1038/cr.2013.168
- Fleming A., Noda T., Yoshimori T., Rubinsztein D.C. Chemical modulators of autophagy as biological probes and potential therapeutics // Nat. Chem. Biol. 2010. V. 7. P. 9–17. https://doi.org/10.1038/nchembio.500
- Fleming A., Bourdenx M., Fujimaki M. et al. The different autophagy degradation pathways and neurodegeneration // Neuron. 2022. V. 110. № 6. P. 935–966. doi: 10.1016/j.neuron.2022.01.017
- Friedman L.G., Lachenmayer M.L., Wang J. et al. Disrupted autophagy leads to dopaminergic axon and dendrite degeneration and promotes presynaptic accumulation of α-synuclein and LRRK2 in the brain // J. Neurosci. 2012. V. 32. № 22. P. 7585–7593. doi: 10.1523/JNEUROSCI.5809-11.2012
- Gafford G.M., Parsons R.G., Helmstetter F.J. Consolidation and reconsolidation of contextual fearmemory requires mammalian target of rapamycin-dependenttranslation in the dorsal hippocampus // Neuroscience. 2011. V. 182. P. 98–104. doi: 10.1016/j.neuroscience.2011.03.023
- Ginet V., Spiehlmann A., Rummel C. et al. Involvement of autophagy in hypoxic-excitotoxic neuronal death // Autophagy. 2014. V. 10. P. 846–860.
- Giordano S., Darley-Usmar V., Zhang J. Autophagy as an essential cellular antioxidant pathway in neurodegenerative disease // Redox Biol. 2013. V. 2. P. 82–90. doi: 10.1016/j.redox.2013.12.013
- Glatigny M., Moriceau S., Rivagorda M. et al. Autophagy is required for memory formation and reverses age-related memory decline // Curr Biol. 2019. V. 29. № 3. P. 435–448. doi: 10.1016/j.cub.2018.12.021
- Guo J.Y., Chen H.Y., Mathew R. et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis // Genes Dev. 2011. V. 25. P. 460–470. doi: 10.1101/gad.2016311
- Hara T., Nakamura K., Matsui M. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice // Nature. 2006. V. 441. P. 885–889. doi: 10.1038/nature04724
- Harnett M.M., Pineda M.A., Latré de Laté P. et al. From Christian de Duve to Yoshinori Ohsumi: More to autophagy than just dining at home // Biomed. J. 2017. V. 40. P. 9–22. doi: 10.1016/j.bj.2016.12.004
- Hartleben B., Gödel M., Meyer-Schwesinger C. et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice // J. Clin. Invest. 2010. V. 120. P. 1084–1096. doi: 10.1172/JCI39492
- Hegde A.N., Inokuchi K., Pei W. et al. Ubiquitin C-terminal hydrolase is an immediate-early gene essential for long-term facilitation in Aplysia // Cell. 1997. V. 89. P. 115–126. doi: 10.1016/s0092-8674(00)80188-9
- Hernandez D., Torres C.A., Setlik W. et al. Regulation of presynaptic neurotransmission by macroautophagy // Neuron. 2012. V. 74. P. 277–284. doi: 10.1016/j.neuron.2012.02.020
- Hirling H. Endosomal trafficking of AMPA-type glutamatereceptors // Neuroscience. 2009. V. 158. P. 36–44. doi: 10.1016/j.neuroscience.2008.02.057
- Hoffmann S., Orlando M., Andrzejak E. et al. Light-Activated ROS production induces synaptic autophagy // J. Neurosci. 2019. V. 39. P. 2163–2183. doi: 10.1523/JNEUROSCI.1317-18.2019
- Hylin M., Zhao J., Tangavelou K.T. et al. A role for autophagy in long-term spatial memory formation in male rodents // J. Neurosci Res. 2018. V. 96. № 3. P. 416–426. doi: 10.1002/jnr.24121
- Inami Y., Waguri S., Sakamoto A. et al. Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells // J. Cell Biol. 2011. V. 193. P. 275–284. doi: 10.1083/jcb.201102031
- Jobim P.F., Pedroso T.R., Christoff R.R. et al. Inhibition of mTOR by rapamycin in the amygdala or hippocampus impairs formation and reconsolidation of inhibitory avoidance memory // Neurobiol. Learn Mem. 2011. V. 97. P. 105–112. doi: 10.1016/j.nlm.2011.10.002
- Johansen T., Lamark T. Selective autophagy mediated by autophagic adapter proteins // Autophagy. 2011. V. 7. № 3. P. 279–296. doi: 10.4161/auto.7.3.14487
- Jung H.S., Chung K.W., Won Kim J.et al. Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia // Cell Metab. 2008. V. 8. P. 318–324. doi: 10.1016/j.cmet.2008.08.013
- Kallergi E., Daskalaki A.D., Kolaxi A. et al. Dendritic autophagy degrades postsynaptic proteins and is required for long-term synaptic depression in mice // Nat. Commun. 2022. V. 13. № 1. P. 680. doi: 10.1038/s41467-022-28301-z.
- Kamada Y., Funakoshi T., Shintani T. et al. Tor-mediated induction of autophagy via an Apg1 proteinkinase complex // J. Cell Biol. 2000. V. 150. № 6. P. 1507–1513. doi: 10.1083/jcb.150.6.1507
- Kaushik S., Rodriguez-Navarro J.A., Arias E. et al. Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance // Cell Metab. 2011. V. 14. P. 173–183. doi: 10.1016/j.cmet.2011.06.008
- Kessels H.W., Malinow R. Synaptic AMPA receptor plasticity and behavior // Neuron. 2009. V. 642. P. 340–350. doi: 10.1016/j.neuron.2009.01.015
- Kleele T., Marinkovic P., Williams P.R. et al. Anassay to image neuronal microtubule dynamics in mice // Nat. Commun. 2014. V. 5. № 4827. doi: 10.1038/ncomms5827
- Klionsky D.J., Emr S.D. Autophagy as a regulated pathway of cellular degradation // Science. 2000. V. 290. № 5497. P. 1717–1721. doi: 10.1126/science.290.5497.1717
- Klionsky D.J., Cregg J.M., Dunn Jr W.A. et al. A unified nomenclature for yeast autophagy-related genes // Dev. Cell. 2003. V. 5. № 4. P. 539–545. doi: 10.1016/s1534-5807(03)00296-x
- Klionsky D.J., Petroni G., Amaravadi R.K. et al. Autophagy in major human diseases // EMBO J. 2021. V. 40. № 19. e108863. doi: 10.15252/embj.2021108863
- Koike M., Shibata M., Tadakoshi M. et al. Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic/ischemic injury // Am. J. Pathol. 2008. V. 172. № 2. P. 454–469. doi: 10.2353/ajpath.2008.070876
- Komatsu M., Waguri S., Ueno T. et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice // J. Cell Biol. 2005. V. 169. № 3. P. 425–434. doi: 10.1083/jcb.200412022
- Komatsu M., Waguri S., Chiba T. et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice // Nature. 2006. V. 441. P. 880–884. doi: 10.1038/nature04723
- Komatsu M., Wang Q.J., Holstein G.R. et al. Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration // Proc. Natl. Acad. Sci. USA. 2007. V. 104. P. 14489–14494. doi: 10.1073/pnas.0701311104
- Komatsu M., Waguri S., Koike M. et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice // Cell. 2007. V. 131. P. 1149–1163. doi: 10.1016/j.cell.2007.10.035
- Kononenko N.L., Classen G.A., Kuijpers M. et al. Retrograde transport of TrkB-containing autophagosomes via the adaptor AP-2 mediates neuronal complexity and prevents neurodegeneration // Nat Commun. 2017. V. 8. 14819. doi: 10.1038/ncomms14819
- Ktistakis N.T. In praise of M. Anselmier who first used the term “autophagie” in 1859 // Autophagy. 2017. V. 13. P. 2015–2017. doi: 10.1080/15548627.2017.1367473
- Kuijpers M., Kochlamazashvili G., Stumpf A. et al. Neuronal autophagy regulates presynaptic neurotransmission by controlling the axonal endoplasmic reticulum // Neuron. 2021. V. 109. P. 299–313. doi: 10.1016/j.neuron.2020.10.005
- Lee S.H., Simonetta A., Sheng M. Subunit rules governing the sorting of internalized AMPA receptors in hippocampal neurons // Neuron. 2004. V. 43. P. 221–236. doi: 10.1016/j.neuron.2004.06.015
- Lee S., Sato Y., Nixon R.A. Lysosomal proteolysis inhibition selectively disrupts axonal transport of degradative organelles and causes an Alzheimer’s-like axonal dystrophy // J. Neurosci. 2011. V. 31. P. 7817–7830. doi: 10.1523/JNEUROSCI.6412-10.2011
- Lee J., Giordano S., Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling // Biochem. J. 2012. V. 441. P. 523–540. doi: 10.1042/BJ20111451
- Lee Y.K., Lee J.A. Role of the mammalian ATG8/LC3 family in autophagy: differential and compensatory roles in the spatiotemporal regulation of autophagy // BMB Rep. 2016. V. 49. № 8. P. 424–430. doi: 10.5483/BMBRep.2016.49.8.081
- Levine B., Kroemer G. Biological functions of autophagy genes: adisease perspective // Cell. 2019. V. 176. № 1–2. P. 11–42. doi: 10.1016/j.cell.2018.09.048
- Li Y., Meloni E.G., Carlezon W.A. et al. Learning and reconsolidation implicate different synaptic mechanisms // Proc. Natl. Acad. Sci. USA. 2013. V. 110. P. 4798–4803. doi: 10.1073/pnas.1217878110
- Li H., Wu J., Shen H. et al. Autophagy in hemorrhagic stroke: mechanisms and clinical implications // Prog. Neurobiol. 2018. V. 16. P. 79–97. doi: 10.1016/j.pneurobio.2017.04.002
- Lieberman O.J., Sulzer D. The synaptic autophagy cycle // J. Mol. Biol. 2020.V. 432. №8. P. 2589–2604. doi: 10.1016/j.jmb.2019.12.028
- Liu J., Xia H., Kim M. et al. Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13 // Cell. 2011. V. 147. P. 223–234. doi: 10.1016/j.cell.2011.08.037
- Liu Y., Xue X., Zhang H. et al. Neuronal-targeted TFEB rescues dysfunction of the autophagy-lysosomal pathway and alleviates ischemic injury in permanent cerebral ischemia // Autophagy. 2019. V. 15. № 3. P. 493–509. doi: 10.1080/15548627.2018.1531196
- Luningschror P., Sendtner M. Autophagy in the presynaptic compartment // Curr. Opin. Neurobiol. 2018. V. 51. P. 80–85. doi: 10.1016/j.conb.2018.02.023
- Maday S., Wallace K.E., Holzbaur E.L. Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons // J. Cell Biol. 2012. V. 196. № 4. P. 407–417. doi: 10.1083/jcb.201106120
- Maday S., Holzbaur E.L. Autophagosome biogenesis in primaryneurons follows an ordered and spatially regulated pathway // Dev. Cell. 2014. V. 30. P. 71–85. doi: 10.1016/j.devcel.2014.06.001
- Maday S., Holzbaur E.L. Compartment-specific regulation ofautophagy in primary neurons // J. Neurosci. 2016. V. 36. P. 5933–5945. doi: 10.1523/JNEUROSCI.4401-15.2016
- Maglione M., Kochlamazashvili G., Eisenberg T. et al. Spermidine protects from age-related synaptic alterations at hippocampal mossy fiber-CA3 synapses // Sci. Rep. 2019. V. 9. № 1. 19616. doi: 10.1038/s41598-019-56133-3
- Mariño G., Niso-Santano M., Baehrecke E.H., Kroemer G. Self-consumption: the interplay of autophagy and apoptosis // Nat. Rev. Mol. Cell Biol. 2014. V. 15. P. 81–94. doi: 10.1038/nrm3735
- Masiero E., Agatea L., Mammucari C. et al. Autophagy is required to maintain muscle mass // Cell Metab. 2009. V. 10. P. 507–515. doi: 10.1016/j.cmet.2009.10.008
- Mayford M., Siegelbaum S.A., Kandel E.R. Synapses and memory storage // Cold Spring Harb Perspect. Biol. 2012. V. 4. № 6. a005751. doi: 10.1101/cshperspect.a005751
- Menzies F.M., Fleming A., Caricasole A. et al. Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities // Neuron. 2017. V. 93. P. 1015–1034. doi: 10.1016/j.neuron.2017.01.022
- Migues P.V., Liu L., Archbold G.E. et al. Blocking synaptic removal of GluA2-containing AMPA receptors prevents the natural forgetting of long-term memories // J. Neurosci. 2016. V. 36. P. 3481–3494. doi: 10.1523/JNEUROSCI.3333-15.2016
- Mizushima N., Yamamoto A., Matsui M., Yoshimori T., Ohsumi Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker // Mol. Biol. Cell. 2004. V. 15. № 3. P. 1101–1111. doi: 10.1091/mbc.e03-09-0704
- Mizushima N., Yoshimori T., Levine B. Methods in mammalian autophagy research // Cell. 2010. V. 140. P. 313–326. doi: 10.1016/j.cell.2010.01.028
- Mizushima N., Komatsu M. Autophagy: renovation of cells and tissues // Cell. 2011. V. 147. P. 728–741. doi: 10.1016/j.cell.2011.10.026
- Mizushima N., Yoshimori T., Ohsumi Y. The role of Atg proteins in autophagosome formation // Annu. Rev. Cell Dev. Biol. 2011. V. 27. P. 107–132. doi: 10.1146/annurev-cellbio-092910-154005
- Mizushima N. A brief history of autophagy from cell biology to physiology and disease // Nat. Cell Biol. 2018. V. 20. № 5. P. 521–527. doi: 10.1038/s41556-018-0092-5
- Mo Y., Sun Y.Y., Liu K.Y. Autophagy and inflammation in ischemic stroke // Neural Regen. Res. 2020. V. 15. № 8. P. 1388–1396. doi: 10.4103/1673-5374.274331
- Nakai A., Yamaguchi O., Takeda T. et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress // Nat. Med. 2007. V. 13. P. 619–624. doi: 10.1038/nm1574
- Nakatogawa H., Suzuki K., Kamada Y., Ohsumi Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast // Nat. Rev. Mol. Cell Biol. 2009. V. 10. № 7. P. 458–467. doi: 10.1038/nrm2708
- Nguyen T.N., Padman B.S., Lazarou M. Deciphering the molecular signals of PINK1/Parkin mitophagy // Trends Cell Biol. 2016. V. 26. P. 733–744. doi: 10.1016/j.tcb.2016.05.008
- Nikoletopoulou V., Markaki M., Palikaras K., Tavernarakis N. Crosstalk between apoptosis, necrosis and autophagy // Biochim. Biophys. Acta. 2013. V. 1833. P. 3448–3459. doi: 10.1016/j.bbamcr.2013.06.001
- Nikoletopoulou V., Sidiropoulou K., Kallergi E., Dalezios Y., Tavernarakis N. Modulation of autophagy by BDNF underlies synaptic plasticity // Cell Metab. 2017. V. 26. P. 230–242. doi: 10.1016/j.cmet.2017.06.005
- Nixon R.A., Yang D.S., Lee J.H. Neurodegenerative lysosomal disorders: a continuum from development to late age // Autophagy. 2008. V. 4. № 5. P. 590–599. doi: 10.4161/auto.6259
- Onodera J., Ohsumi Y. Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation // J. Biol. Chem. 2005. V. 280. № 36. P. 31582–31586. doi: 10.1074/jbc.M506736200
- Ozcelik S., Fraser G., Castets P. et al. Rapamycin attenuates the progression of tau pathology in P301S tau transgenic mice // PLoS One. 2013. V. 8. № 5. e62459. doi: 10.1371/journal.pone.0062459
- Pandey K., Yu X., Steinmetz A., Alberini C. Autophagy coupled to translation is required for long-term memory // Autophagy. 2020. V. 17. № 7. P. 1614–1635. doi: 10.1080/15548627.2020.1775393
- Park H., Poo M.M. Neurotrophin regulation of neural circuit development and function // Nat. Rev. Neurosci. 2013. V. 14. № 1. P. 7–23. doi: 10.1038/nrn3379
- Parsons R.G., Gafford G.M., Helmstetter F.J. Translational control via the mammalian target of rapamycin pathway is critical for the formation and stability of long-term fear memory in amygdala neurons // J. Neurosci. 2006. V. 26. № 50. P. 12977–12983. doi: 10.1523/JNEUROSCI.4209-06.2006
- Pattingre S., Espert L., Biard-Piechaczyk M., Codogno P. Regulation of macroautophagy by mTOR and Beclin 1 complexes // Biochimie. 2008. V. 90. № 2. P. 313–323. doi: 10.1016/j.biochi.2007.08.014
- Pitman R.K. Will reconsolidation blockade offer a novel treatment for posttraumatic stress disorder? // Front. Behav. Neurosci. 2011. V. 5. № 11. doi: 10.3389/fnbeh.2011.00011
- Puyal J., Vaslin A., Mottier V., Clarke P.G. Postischemic treatment of neonatal cerebral ischemia should target autophagy // Ann. Neurol. 2009. V. 66. № 3. P. 378–389. doi: 10.1002/ana.21714
- Quirk G.J., Mueller D. Neural mechanisms of extinction learning and retrieval // Neuropsychopharmacology. 2008. V. 33. № 1. P. 56–72. doi: 10.1038/sj.npp.1301555
- Raben N., Hill V., Shea L. et al. Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease // Hum. Mol. Genet. 2008. V. 17. № 24. P. 3897–3908. doi: 10.1093/hmg/ddn292
- Rami A., Kögel D. Apoptosis meets autophagy-like cell death in the ischemic penumbra: Two sides of the same coin? // Autophagy. 2008. V. 4. № 4. P. 422–426. doi: 10.4161/auto.5778
- Rami A., Langhagen A., Steiger S. Focal cerebral ischemia induces upregulation of Beclin 1 and autophagy-like cell death // Neurobiol. 2008. V. 29. P. 132–141. doi: 10.1016/j.nbd.2007.08.005
- Ravikumar B., Vacher C., Berger Z. et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease // Nat. Genet. 2004. V. 36. № 6. P. 585–595. doi: 10.1038/ng1362
- Ravikumar B., Moreau K., Jahreiss L., Puri C., Rubinsztein D.C. Plasma membrane contributes to the formation of pre-autophagosomal structures // Nat. Cell Biol. 2010. V. 12. № 8. P. 747–757. doi: 10.1038/ncb2078
- Rodríguez-Navarro J.A., Rodríguez L., Casarejos M.J. et al. Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation // Neurobiol. Dis. 2010. V. 39. № 3. P. 423–438. doi: 10.1016/j.nbd.2010.05.014
- Rowland A.M., Richmond J.E., Olsen J.G., Hall D.H., Bamber B.A. Presynaptic terminals independently regulate synaptic clustering and autophagy of GABAA receptors in Caenorhabditis elegans // J. Neurosci. 2006. V. 26. P. 1711–1720.doi: 10.1523/JNEUROSCI.2279-05.2006
- Rubinsztein D.C., Shpilka T., Elazar Z. Mechanisms of autophagosome biogenesis // Curr. Biol. 2012. V. 22. № 1. P. 29–34. doi: 10.1016/j.cub.2011.11.034
- Russell R.C., Tian Y., Yuan H. et al. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase // Nat. Cell Biol. 2013. V. 15. № 7. P. 741–750. doi: 10.1038/ncb2757
- Rybnikova E., Samoilov M..Current insights into the molecular mechanisms of hypoxic pre- and postconditioning using hypobaric hypoxia // Front. Neurosci. 2015. V. 9. № 388. doi: 10.3389/fnins.2015.00388
- Rybnikova E., Nalivaeva N. Glucocorticoid-dependent mechanisms of brain tolerance to hypoxia // Int. J. Mol. Sci. 2021. V. 22. № 15. P. 7982. doi: 10.3390/ijms22157982
- Sainsbury A., Zhang L. Role of the arcuate nucleus of the hypothalamus in regulation of body weight during energy deficit // Mol. Cell Endocrinol. 2010. V. 316. № 2. P. 109–119. doi: 10.1016/j.mce.2009.09.025
- Sakai S., Shichita T. Inflammation and neural repair after ischemic brain injury // Neurochem. Int. 2019. V. 130. № 104316. doi: 10.1016/j.neuint.2018.10.013
- Samoilov M., Churilova A., Gluschenko T., Rybnikova E. Neocortical pCREB and BDNF expression under different modes of hypobaric hypoxia: role in brain hypoxic tolerance in rats // Acta Histochem. 2014. V. 116. № 5. P. 949–957. doi: 10.1016/j.acthis.2014.03.009
- Shehata M., Matsumura H., Okubo-Suzuki R., Ohkawa N., Inokuchi K. Neuronal stimulation induces autophagy in hippocampal neurons that is involved in AMPA receptor degradation after chemical long-term depression // J. Neurosci. 2012. V. 32. № 30. P. 10413–10422. doi: 10.1523/JNEUROSCI.4533-11.2012
- Shehata M., Inokuchi K. Does autophagy work in synaptic plasticity and memory? // Rev. Neurosci. 2014. V. 25. № 4. P. 543–557. doi: 10.1515/revneuro-2014-0002
- Shehata M., Abdou K., Choko K. et al. Autophagy enhances memory erasure through synaptic destabilization // J. Neurosci. 2018. V. 38. P. 3809–3822. doi: 10.1523/JNEUROSCI.3505-17.2018
- Shen W., Ganetzky B. Autophagy promotes synapse development in Drosophila // J. Cell Biol. 2009. V. 187. № 1. P. 71–79. doi: 10.1083/jcb.200907109
- Sheng R., Zhang L.S., Han R. et al. Autophagy activation is associated with neuroprotection in a rat model of focal cerebral ischemic preconditioning // Autophagy. 2010. V. 6. № 4. P. 482–494. doi: 10.4161/auto.6.4.11737
- Shepherd J.D., Huganir R.L. The cell biology of synaptic plasticity: AMPA receptor trafficking // Annu. Rev. Cell. Dev. Biol. 2007. V. 23. P. 613–643. doi: 10.1146/annurev.cellbio.23.090506.123516
- Shi R., Weng J., Zhao L. et al. Excessive autophagy contributes to neuron death in cerebral ischemia // CNS Neurosci. Ther. 2012. V. 18. № 3. P. 250–260. doi: 10.1111/j.1755-5949.2012.00295.x
- Sidibe D.K., Vogel M.C., Maday S. Organization of the autophagy pathway in neurons // Curr. Opin. Neurobiol. 2022. V. 75. № 102554. doi: 10.1016/j.conb.2022.102554
- Singh R. Autophagy and regulation of lipid metabolism // Results Probl, Cell Differ. 2010. V. 52. P. 35–46 doi: 10.1007/978-3-642-14426-4_4.
- Son J.H., Shim J.H., Kim K.H., Ha J.Y., Han J.Y. Neuronal autophagy and neurodegenerative diseases // Exp. Mol. Med. 2012. V. 44. № 2. P. 89–98. doi: 10.3858/emm.2012.44.2.031
- Soukup S-F., Kuenen S., Vanhauwaert R. et al. A LRRK2-dependent endophilinA phosphoswitch is critical for macroautophagy at presynaptic terminals // Neuron. 2016. V. 92. P. 829–844. doi: 10.1016/j.neuron.2016.09.037
- Spruston N. Pyramidal neurons: dendritic structure and synaptic integration // Nat. Rev. Neurosci. 2008. V. 9. P. 206–221. https://doi.org/10.1038/nrn2286
- Stavoe A.K., Hill S.E., Hall D.H., Colon-Ramos D.A. KIF1A/UNC-104 transports ATG-9 to regulate neurodevelopment and autophagy at synapses // Dev. Cell. 2016. V. 38. P. 171–185. doi: 10.1016/j.devcel.2016.06.012
- Stoica L., Zhu P.J., Huang W. et al. Selective pharmacogenetic inhibition of mammalian target of Rapamycin complex I (mTORC1) blocks long-term synaptic plasticity and memory storage // Proc. Natl. Acad. Sci. USA. 2011. V. 108. № 9. P. 3791–3796. doi: 10.1073/pnas.1014715108
- Suzuki K., Ohsumi Y. Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae // FEBS Lett. 2007. V. 581. № 11. P. 2156–2161. doi: 10.1016/j.febslet.2007.01.096
- Suzuki S.W., Onodera J., Ohsumi Y. Starvation induced cell death in autophagy-defective yeast mutants is caused by mitochondria dysfunction // PLoS One. 2011. V. 6. № 2. e17412. doi: 10.1371/journal.pone.0017412
- Takamura A., Komatsu M., Hara T. et al. Autophagy-deficient mice develop multiple liver tumors // Genes Dev. 2011. V. 25. № 8. P. 795–800. doi: 10.1101/gad.2016211
- Takeshige K., Baba M., Tsuboi S., Noda T., Ohsumi Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction // J. Cell Biol. 1992. V. 119. № 2. P. 301–311. doi: 10.1083/jcb.119.2.301
- Tang G., Gudsnuk K., Kuo S.H. et al. Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits // Neuron. 2014. V. 83. № 5. P 1131–1143. doi: 10.1016/j.neuron.2014.07.040.
- Tooze S.A., Yoshimori T. The origin of the autophagosomal membrane // Nat. Cell Biol. 2010. V. 12. № 9. P. 831–835. doi: 10.1038/ncb0910-831
- Tsukada M., Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae // FEBS Lett. 1993. V. 333. № 1–2. P. 169–174. doi: 10.1016/0014-5793(93)80398-e
- Wang T., Martin S., Papadopulos A. et al. Control of autophagosome axonal retrograde flux by presynaptic activity unveiled using botulinum neurotoxin type A // J. Neurosci. 2015. V. 35. № 15. P. 6179–6194. doi: 10.1523/JNEUROSCI.3757-14.2015
- Wei Y., Liu M., Li X., Liu J., Li H. Origin of the autophagosome membrane in mammals // Biomed. Res. Int. 2018. V. 2018. № 1012789. doi: 10.1155/2018/1012789
- Wullschleger S., Loewith R., Hall M.N. TOR signaling in growth and metabolism // Cell. 2006. V. 124. № 3. P. 471–484. doi: 10.1016/j.cell.2006.01.016
- Yan J., Porch M.W., Court-Vazquez B., Bennett M.V.L., Zukin R.S. Activation of autophagy rescues synaptic and cognitive deficits in fragile X mice // Proc. Natl. Acad. Sci. USA. 2018. V. 115. № 41. P. E9707–E9716. doi: 10.1073/pnas.1808247115
- Yang Y., Coleman M., Zhang L., Zheng X., Yue Z. Autophagy in axonal and dendritic degeneration // Trends Neurosci. 2013. V. 36. № 7. P. 418–428. doi: 10.1016/j.tins.2013.04.001
- Yang Z., Lin P., Chen B. et al. Autophagy alleviates hypoxia-induced blood-brain barrier injury via regulation of CLDN5 (claudin 5) // Autophagy. 2021. V. 17. № 10. P. 3048–3067. doi: 10.1080/15548627.2020.1851897
- Yang S., Park D., Manning L. et al. Presynaptic autophagy is coupled to the synaptic vesicle cycle via ATG-9 // Neuron. 2022. V. 110. № 5. P. 824–840.e10. doi: 10.1016/j.neuron.2021.12.031
- Young J.E., Martinez R.A., La Spada A.R. Nutrient deprivation induces neuronal autophagy and implicates reduced insulin signaling in neuroprotective autophagy activation // J. Biol. Chem. 2009. V. 284. № 4. P. 2363–2373. doi: 10.1074/jbc.M806088200
- Zhang J. Autophagy and mitophagy in cellular damage control // Redox Biol. 2013. V. 1. № 1. P. 19–23. doi: 10.1016/j.redox.2012.11.008
- Zhang X., Yan H., Yuan Y. et al. Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance // Autophagy. 2013. V. 9. № 9. P. 1321–1333. doi: 10.4161/auto.25132
- Zweifel L.S., Kuruvilla R., Ginty D.D. Functions and mechanisms of retrograde neurotrophin signalling // Nat. Rev. Neurosci. 2005. V. 6. № 8. P. 615–625. doi: 10.1038/nrn1727
Supplementary files
