Autophagy in the nervous system: general principles and specific functions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Autophagy is an intracellular mechanism for the isolation, transport and degradation of macromolecules and organelles. The physiological significance of autophagy lies, firstly, in maintaining the constancy of the intracellular environment through the timely disposal of proteins with a disrupted structure and damaged organelles. Secondly, due to the selective degradation of macromolecules, autophagy supplies the cell with monomers, which are then used by it to synthesize new compounds, which serves to ensure the rearrangement of cellular metabolism in the processes of cell differentiation, ontogenesis and adaptation to environmental challenges. Autophagy is an extremely important mechanism for maintaining normal functioning of postmitotic and differentiated cells, including neurons. Impaired neuronal autophagy leads to the formation of aggregated protein plaques, the accumulation of damaged cellular organelles, defects in the structure of processes and neuronal degeneration, which often accompanies to the progression of some forms of neurodegenerative diseases. In addition, the role of autophagy in synaptic plasticity and memory mechanisms has been established. Since autophagy has a significant impact on cellular metabolism, the study of the regulation and main pathways of this mechanism may be crucial in the elaboration of means and approaches to the treatment and prevention of many pathologies that progress with age. This review describes the basic concepts of the autophagy process, summarizes the key functions of autophagy in cells, and also presents current data on its role in ensuring the normal metabolism and implementation of specific functions of neurons.

Full Text

Restricted Access

About the authors

A. V. Churilova

Pavlov Institute of Physiology of the Russian Academy of Sciences

Author for correspondence.
Email: churilovaav@infran.ru
Russian Federation, 199034, St. Petersburg

References

  1. Баранова К.А., Зенько М.Ю. Анксиолитический эффект дистантного ишемического пре- и посткондиционирования в модели посттравматического стрессового расстройства //Ж. выс. нерв. деят. 2018. Т. 68. № 5. С. 663–672.
  2. Ватаева Л.А., Тюлькова Е.И., Самойлов М.О. Влияние предварительного воздействия умеренной гипоксии на нарушения выработки и воспроизведения условной реакции пассивного избегания, вызываемые тяжелой гипобарической гипоксией у крыс // Ж. высш. нерв.деят. 2004. Т. 54. № 6. С. 795–801.
  3. Зенько М.Ю., Рыбникова Е.А. Перекрестная адаптация: от Ф.З. Меерсона до наших дней. Часть 1. Адаптация, перекрестная адаптация и перекрестная сенсибилизация // Ж. успехи физиол. наук. 2019. Т. 50. № 4. С. 3–13. doi: 10.1134/S0301179819040088
  4. Зенько М.Ю., Рыбникова Е.А. Гипоксическая адаптация и тренировка: исторические, биомедицинские и спортивные аспекты // Авиакосмич. и экологич. медицина. 2021. Т. 55. № 1. С. 20–26. doi: 10.21687/0233-528X-2021-55-1-20-26.
  5. Меерсон Ф.З. Адаптационная медицина: механизмы и защитные эффекты адаптации. М.: Hypoxia Medical LTD, 1993. 331 с.
  6. Самойлов М.О., Рыбникова Е.А., Чурилова А.В. Сигнальные молекулярные и гормональные механизмы формирования протективных эффектов гипоксического прекондиционирования // Пат. физиол. и эксп. терапия. 2012. № 3. С. 3–10.
  7. Чурилова А.В., Глущенко Т.С., Самойлов М.О. Изменение экспрессии антиапоптотического белка Bcl-2 в неокортексе и гиппокампе у крыс под влиянием различных режимов гипобарической гипоксии // Морфология. 2014. Т. 146. № 5. С. 7–13.
  8. Abel T., Klann E. Molecular and cellular cognition: neurobiology of learning and memory special issue 2013 // Neurobiol. Learn. Mem. 2013. V. 105. P. 1–2. doi: 10.1016/j.nlm.2013.08.005
  9. Adhami F., Liao G., Morozov Y.M. et al. Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy // Am. J. Pathol. 2006. V. 169. № 2. P. 566–583. doi: 10.2353/ajpath.2006.051066
  10. Alberini C.M., Kandel E.R. The regulation of transcription in memory consolidation // Cold Spring Harb. Perspect. Biol. 2015. V. 7. a021741.doi: 10.1101/cshperspect.a021741
  11. Alfaro I.E., Albornoz A., Molina A. et al. Chaperone mediated autophagy in the crosstalk of neurodegenerative diseases and metabolic disorders // Front. Endocrinol. 2018. V. 9. P. 778. doi: 10.3389/fendo.2018.00778
  12. Alirezaei M., Kemball C.C., Flynn C.T. et al. Short-term fasting induces profoundneuronal autophagy // Autophagy. 2010. V. 6. P. 702–710. doi: 10.4161/auto.6.6.12376
  13. Baehrecke E.H. Autophagy: dual roles in life and death? // Nat. Rev. Mol. Cell Biol. 2005. V. 6. P. 505–510.
  14. Bailey C.H., Kandel E.R., Harris K.M. Structural Components of Synaptic Plasticity and Memory Consolidation // Cold Spring Harb. Perspect. Biol. 2015. V. 7. 7:a021758. doi: 10.1101/cshperspect.a021758
  15. Bekinschtein P., Katche C., Slipczuk L.N. et al. mTOR signaling in the hippocampus is necessary for memory formation // Neurobiol. Learn Mem. 2007. V. 87. P. 303–307.
  16. Bence N.F., Sampat R.M., Kopito R.R. Impairment of the ubiquitin-proteasome system by protein aggregation // Science. 2001. V. 292. P. 1552–1555. doi: 10.1126/science.292.5521.1552
  17. Bhaskar P.T., Hay N. The two TORCs and Akt // Dev. Cell. 2007. V. 12. № 4. P. 487–502. doi: 10.1016/j.devcel.2007.03.020
  18. Bingol B., Sheng M. Deconstruction for reconstruction: the role of proteolysis in neural plasticity and disease // Neuron. 2011. V. 69. № 1. P. 22–32. doi: 10.1016/j.neuron.2010.11.006
  19. Bjørkøy G., Lamark T., Brech A. et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death // J. Cell Biol. 2005. V. 171. P. 603–614. doi: 10.1083/jcb.200507002
  20. Blundell J., Kouser M., Powell C.M. System icinhibition of mammalian target of rapamycin inhibits fear memory reconsolidation // Neurobiol. Learn Mem. 2008. V. 90. P. 28–35. doi: 10.1016/j.nlm.2007.12.004
  21. Boland B., Kumar A., Lee S. et al. Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease // J Neurosci. 2008. V. 28. № 27. P. 6926–6937. doi: 10.1523/JNEUROSCI.0800-08.2008
  22. Boland B., Yu W.H., Corti O. et al. Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing // Nat. Rev. Drug Discov. 2018. V. 17. № 9. P. 660–688. doi: 10.1038/nrd.2018.109
  23. Boya P., Gonzalez-Polo R.A., Casares N. et al. Inhibition of macroautophagy triggers apoptosis // Mol. Cell. Biol. 2005. V. 25. № 3. P. 1025–1040. doi: 10.1128/MCB.25.3.1025-1040.2005
  24. Carloni S., Buonocore G., Balduini W. Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury // Neurobiol. Dis. 2008. V. 32. № 3. P. 329–339. doi: 10.1016/j.nbd.2008.07.022
  25. Castillo K., Nassif M., Valenzuela V. et al. Trehalose delays the progression of amyotrophic lateral sclerosis by enhancing autophagy in motoneurons // Autophagy. 2013. V. 9. P. 1308–1320. doi: 10.4161/auto.25188
  26. Chen W., Sun Y., Liu K., Sun X. Autophagy: a double-edged sword for neuronal survival after cerebral ischemia // Neural Regen. Res. 2014.V. 9. № 12. P. 1210–1216. doi: 10.4103/1673-5374.135329
  27. Cheng X.T., Zhou B., Lin M.Y., Cai Q, Sheng Z.H. Axonal autophagosomes recruit dynein for retrograde transport through fusion with late endosomes // J. Cell Biol. 2015. V. 209. № 3. P. 377–386. doi: 10.1083/jcb.201412046
  28. Churilova A., Zachepilo T., Baranova K., Rybnikova E. Differences in the autophagy response to hypoxia in the hippocampus and neocortex of rats // Int. J. Mol. Sci. 2022. V. 23. № 14. 8002. doi: 10.3390/ijms23148002
  29. Ciechanover A., Kwon Y.T. Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies // Exp. Mol. Med. 2015. V. 47. № 3. e147. doi: 10.1038/emm.2014.117
  30. Ciechanover A. Intracellular protein degradation: From a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting // Best Pract. Res. Clin. Haematol. 2017. V. 30. № 4. P. 341–355. doi: 10.1016/j.beha.2017.09.001
  31. Clark S.G., Graybeal L.L., Id S.B. et al. Basal autophagy is required for promoting dendritic terminal branching in Drosophila sensory neurons // PLoS One. 2018. V. 13. № 11. e0206743. doi: 10.1371/journal.pone.0206743
  32. Conway O., Akpinar H.A., Rogov V.V., Kirkin V. Selective autophagy receptors in neuronal health and disease // J. Mol. Biol. 2020. V. 432. № 8. P. 2483–2509. doi: 10.1016/j.jmb.2019.10.013
  33. Cuervo A.M., Dice J.F. A receptor for the selective uptake and degradation of proteins by lysosomes // Science. 1996. V. 273. P. 501–503. doi: 10.1126/science.273.5274.501
  34. Cuervo A.M., Wong E. Chaperone-mediated autophagy: roles in disease and aging // Cell Res. 2014. V. 24. № 1. P. 92–104. doi: 10.1038/cr.2013.153
  35. De Duve C., Wattiaux R. Functions of lysosomes // Annu. Rev. Physiol. 1966. V. 28. P. 435–492. doi: 10.1146/annurev.ph.28.030166.002251
  36. De Risi M., Torromino G., Tufano M. et al. Mechanisms by which autophagy regulates memory capacity in ageing // Aging Cell. 2020. V. 19. № 9. e13189. doi: 10.1111/acel.13189
  37. Deretic V., Saitoh T., Akira S. Autophagy in infection, inflammation and immunity // Nat. Rev. Immunol. 2013. V. 13. № 10. P. 722–737. doi: 10.1038/nri3532
  38. Djajadikerta A., Keshri S., Pavel M. et al. Autophagy induction as a therapeutic strategy for neurodegenerative diseases // J. Mol. Biol. 2020. V. 432.№8. P. 2799–2821. doi: 10.1016/j.jmb.2019.12.035
  39. Dice J.F. Peptide sequences that target cytosolic proteins for lysosomal proteolysis // Trends Biochem. Sci. 1990. V. 15. № 8. P. 305–309. doi: 10.1016/0968-0004(90)90019-8
  40. Dong Z., Han H., Li H. et al. Long-term potentiation decay and memory loss are mediated by AMPAR endocytosis // J. Clin. Invest. 2015. V. 125. P. 234–247. doi: 10.1172/JCI77888
  41. Ebato C., Uchida T., Arakawa M. et al. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet // Cell Metab. 2008. V. 8. P. 325–332. doi: 10.1016/j.cmet.2008.08.009
  42. Ehlers M.D. Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting // Neuron. 2000. V. 28. P. 511–525 doi: 10.1016/s0896-6273(00)00129-x
  43. Feng Y., He D., Yao Z., Klionsky D.J. The machinery of macroautophagy // Cell Res. 2014. V. 24. № 1. P. 24–41 doi: 10.1038/cr.2013.168
  44. Fleming A., Noda T., Yoshimori T., Rubinsztein D.C. Chemical modulators of autophagy as biological probes and potential therapeutics // Nat. Chem. Biol. 2010. V. 7. P. 9–17. https://doi.org/10.1038/nchembio.500
  45. Fleming A., Bourdenx M., Fujimaki M. et al. The different autophagy degradation pathways and neurodegeneration // Neuron. 2022. V. 110. № 6. P. 935–966. doi: 10.1016/j.neuron.2022.01.017
  46. Friedman L.G., Lachenmayer M.L., Wang J. et al. Disrupted autophagy leads to dopaminergic axon and dendrite degeneration and promotes presynaptic accumulation of α-synuclein and LRRK2 in the brain // J. Neurosci. 2012. V. 32. № 22. P. 7585–7593. doi: 10.1523/JNEUROSCI.5809-11.2012
  47. Gafford G.M., Parsons R.G., Helmstetter F.J. Consolidation and reconsolidation of contextual fearmemory requires mammalian target of rapamycin-dependenttranslation in the dorsal hippocampus // Neuroscience. 2011. V. 182. P. 98–104. doi: 10.1016/j.neuroscience.2011.03.023
  48. Ginet V., Spiehlmann A., Rummel C. et al. Involvement of autophagy in hypoxic-excitotoxic neuronal death // Autophagy. 2014. V. 10. P. 846–860.
  49. Giordano S., Darley-Usmar V., Zhang J. Autophagy as an essential cellular antioxidant pathway in neurodegenerative disease // Redox Biol. 2013. V. 2. P. 82–90. doi: 10.1016/j.redox.2013.12.013
  50. Glatigny M., Moriceau S., Rivagorda M. et al. Autophagy is required for memory formation and reverses age-related memory decline // Curr Biol. 2019. V. 29. № 3. P. 435–448. doi: 10.1016/j.cub.2018.12.021
  51. Guo J.Y., Chen H.Y., Mathew R. et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis // Genes Dev. 2011. V. 25. P. 460–470. doi: 10.1101/gad.2016311
  52. Hara T., Nakamura K., Matsui M. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice // Nature. 2006. V. 441. P. 885–889. doi: 10.1038/nature04724
  53. Harnett M.M., Pineda M.A., Latré de Laté P. et al. From Christian de Duve to Yoshinori Ohsumi: More to autophagy than just dining at home // Biomed. J. 2017. V. 40. P. 9–22. doi: 10.1016/j.bj.2016.12.004
  54. Hartleben B., Gödel M., Meyer-Schwesinger C. et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice // J. Clin. Invest. 2010. V. 120. P. 1084–1096. doi: 10.1172/JCI39492
  55. Hegde A.N., Inokuchi K., Pei W. et al. Ubiquitin C-terminal hydrolase is an immediate-early gene essential for long-term facilitation in Aplysia // Cell. 1997. V. 89. P. 115–126. doi: 10.1016/s0092-8674(00)80188-9
  56. Hernandez D., Torres C.A., Setlik W. et al. Regulation of presynaptic neurotransmission by macroautophagy // Neuron. 2012. V. 74. P. 277–284. doi: 10.1016/j.neuron.2012.02.020
  57. Hirling H. Endosomal trafficking of AMPA-type glutamatereceptors // Neuroscience. 2009. V. 158. P. 36–44. doi: 10.1016/j.neuroscience.2008.02.057
  58. Hoffmann S., Orlando M., Andrzejak E. et al. Light-Activated ROS production induces synaptic autophagy // J. Neurosci. 2019. V. 39. P. 2163–2183. doi: 10.1523/JNEUROSCI.1317-18.2019
  59. Hylin M., Zhao J., Tangavelou K.T. et al. A role for autophagy in long-term spatial memory formation in male rodents // J. Neurosci Res. 2018. V. 96. № 3. P. 416–426. doi: 10.1002/jnr.24121
  60. Inami Y., Waguri S., Sakamoto A. et al. Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells // J. Cell Biol. 2011. V. 193. P. 275–284. doi: 10.1083/jcb.201102031
  61. Jobim P.F., Pedroso T.R., Christoff R.R. et al. Inhibition of mTOR by rapamycin in the amygdala or hippocampus impairs formation and reconsolidation of inhibitory avoidance memory // Neurobiol. Learn Mem. 2011. V. 97. P. 105–112. doi: 10.1016/j.nlm.2011.10.002
  62. Johansen T., Lamark T. Selective autophagy mediated by autophagic adapter proteins // Autophagy. 2011. V. 7. № 3. P. 279–296. doi: 10.4161/auto.7.3.14487
  63. Jung H.S., Chung K.W., Won Kim J.et al. Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia // Cell Metab. 2008. V. 8. P. 318–324. doi: 10.1016/j.cmet.2008.08.013
  64. Kallergi E., Daskalaki A.D., Kolaxi A. et al. Dendritic autophagy degrades postsynaptic proteins and is required for long-term synaptic depression in mice // Nat. Commun. 2022. V. 13. № 1. P. 680. doi: 10.1038/s41467-022-28301-z.
  65. Kamada Y., Funakoshi T., Shintani T. et al. Tor-mediated induction of autophagy via an Apg1 proteinkinase complex // J. Cell Biol. 2000. V. 150. № 6. P. 1507–1513. doi: 10.1083/jcb.150.6.1507
  66. Kaushik S., Rodriguez-Navarro J.A., Arias E. et al. Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance // Cell Metab. 2011. V. 14. P. 173–183. doi: 10.1016/j.cmet.2011.06.008
  67. Kessels H.W., Malinow R. Synaptic AMPA receptor plasticity and behavior // Neuron. 2009. V. 642. P. 340–350. doi: 10.1016/j.neuron.2009.01.015
  68. Kleele T., Marinkovic P., Williams P.R. et al. Anassay to image neuronal microtubule dynamics in mice // Nat. Commun. 2014. V. 5. № 4827. doi: 10.1038/ncomms5827
  69. Klionsky D.J., Emr S.D. Autophagy as a regulated pathway of cellular degradation // Science. 2000. V. 290. № 5497. P. 1717–1721. doi: 10.1126/science.290.5497.1717
  70. Klionsky D.J., Cregg J.M., Dunn Jr W.A. et al. A unified nomenclature for yeast autophagy-related genes // Dev. Cell. 2003. V. 5. № 4. P. 539–545. doi: 10.1016/s1534-5807(03)00296-x
  71. Klionsky D.J., Petroni G., Amaravadi R.K. et al. Autophagy in major human diseases // EMBO J. 2021. V. 40. № 19. e108863. doi: 10.15252/embj.2021108863
  72. Koike M., Shibata M., Tadakoshi M. et al. Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic/ischemic injury // Am. J. Pathol. 2008. V. 172. № 2. P. 454–469. doi: 10.2353/ajpath.2008.070876
  73. Komatsu M., Waguri S., Ueno T. et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice // J. Cell Biol. 2005. V. 169. № 3. P. 425–434. doi: 10.1083/jcb.200412022
  74. Komatsu M., Waguri S., Chiba T. et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice // Nature. 2006. V. 441. P. 880–884. doi: 10.1038/nature04723
  75. Komatsu M., Wang Q.J., Holstein G.R. et al. Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration // Proc. Natl. Acad. Sci. USA. 2007. V. 104. P. 14489–14494. doi: 10.1073/pnas.0701311104
  76. Komatsu M., Waguri S., Koike M. et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice // Cell. 2007. V. 131. P. 1149–1163. doi: 10.1016/j.cell.2007.10.035
  77. Kononenko N.L., Classen G.A., Kuijpers M. et al. Retrograde transport of TrkB-containing autophagosomes via the adaptor AP-2 mediates neuronal complexity and prevents neurodegeneration // Nat Commun. 2017. V. 8. 14819. doi: 10.1038/ncomms14819
  78. Ktistakis N.T. In praise of M. Anselmier who first used the term “autophagie” in 1859 // Autophagy. 2017. V. 13. P. 2015–2017. doi: 10.1080/15548627.2017.1367473
  79. Kuijpers M., Kochlamazashvili G., Stumpf A. et al. Neuronal autophagy regulates presynaptic neurotransmission by controlling the axonal endoplasmic reticulum // Neuron. 2021. V. 109. P. 299–313. doi: 10.1016/j.neuron.2020.10.005
  80. Lee S.H., Simonetta A., Sheng M. Subunit rules governing the sorting of internalized AMPA receptors in hippocampal neurons // Neuron. 2004. V. 43. P. 221–236. doi: 10.1016/j.neuron.2004.06.015
  81. Lee S., Sato Y., Nixon R.A. Lysosomal proteolysis inhibition selectively disrupts axonal transport of degradative organelles and causes an Alzheimer’s-like axonal dystrophy // J. Neurosci. 2011. V. 31. P. 7817–7830. doi: 10.1523/JNEUROSCI.6412-10.2011
  82. Lee J., Giordano S., Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling // Biochem. J. 2012. V. 441. P. 523–540. doi: 10.1042/BJ20111451
  83. Lee Y.K., Lee J.A. Role of the mammalian ATG8/LC3 family in autophagy: differential and compensatory roles in the spatiotemporal regulation of autophagy // BMB Rep. 2016. V. 49. № 8. P. 424–430. doi: 10.5483/BMBRep.2016.49.8.081
  84. Levine B., Kroemer G. Biological functions of autophagy genes: adisease perspective // Cell. 2019. V. 176. № 1–2. P. 11–42. doi: 10.1016/j.cell.2018.09.048
  85. Li Y., Meloni E.G., Carlezon W.A. et al. Learning and reconsolidation implicate different synaptic mechanisms // Proc. Natl. Acad. Sci. USA. 2013. V. 110. P. 4798–4803. doi: 10.1073/pnas.1217878110
  86. Li H., Wu J., Shen H. et al. Autophagy in hemorrhagic stroke: mechanisms and clinical implications // Prog. Neurobiol. 2018. V. 16. P. 79–97. doi: 10.1016/j.pneurobio.2017.04.002
  87. Lieberman O.J., Sulzer D. The synaptic autophagy cycle // J. Mol. Biol. 2020.V. 432. №8. P. 2589–2604. doi: 10.1016/j.jmb.2019.12.028
  88. Liu J., Xia H., Kim M. et al. Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13 // Cell. 2011. V. 147. P. 223–234. doi: 10.1016/j.cell.2011.08.037
  89. Liu Y., Xue X., Zhang H. et al. Neuronal-targeted TFEB rescues dysfunction of the autophagy-lysosomal pathway and alleviates ischemic injury in permanent cerebral ischemia // Autophagy. 2019. V. 15. № 3. P. 493–509. doi: 10.1080/15548627.2018.1531196
  90. Luningschror P., Sendtner M. Autophagy in the presynaptic compartment // Curr. Opin. Neurobiol. 2018. V. 51. P. 80–85. doi: 10.1016/j.conb.2018.02.023
  91. Maday S., Wallace K.E., Holzbaur E.L. Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons // J. Cell Biol. 2012. V. 196. № 4. P. 407–417. doi: 10.1083/jcb.201106120
  92. Maday S., Holzbaur E.L. Autophagosome biogenesis in primaryneurons follows an ordered and spatially regulated pathway // Dev. Cell. 2014. V. 30. P. 71–85. doi: 10.1016/j.devcel.2014.06.001
  93. Maday S., Holzbaur E.L. Compartment-specific regulation ofautophagy in primary neurons // J. Neurosci. 2016. V. 36. P. 5933–5945. doi: 10.1523/JNEUROSCI.4401-15.2016
  94. Maglione M., Kochlamazashvili G., Eisenberg T. et al. Spermidine protects from age-related synaptic alterations at hippocampal mossy fiber-CA3 synapses // Sci. Rep. 2019. V. 9. № 1. 19616. doi: 10.1038/s41598-019-56133-3
  95. Mariño G., Niso-Santano M., Baehrecke E.H., Kroemer G. Self-consumption: the interplay of autophagy and apoptosis // Nat. Rev. Mol. Cell Biol. 2014. V. 15. P. 81–94. doi: 10.1038/nrm3735
  96. Masiero E., Agatea L., Mammucari C. et al. Autophagy is required to maintain muscle mass // Cell Metab. 2009. V. 10. P. 507–515. doi: 10.1016/j.cmet.2009.10.008
  97. Mayford M., Siegelbaum S.A., Kandel E.R. Synapses and memory storage // Cold Spring Harb Perspect. Biol. 2012. V. 4. № 6. a005751. doi: 10.1101/cshperspect.a005751
  98. Menzies F.M., Fleming A., Caricasole A. et al. Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities // Neuron. 2017. V. 93. P. 1015–1034. doi: 10.1016/j.neuron.2017.01.022
  99. Migues P.V., Liu L., Archbold G.E. et al. Blocking synaptic removal of GluA2-containing AMPA receptors prevents the natural forgetting of long-term memories // J. Neurosci. 2016. V. 36. P. 3481–3494. doi: 10.1523/JNEUROSCI.3333-15.2016
  100. Mizushima N., Yamamoto A., Matsui M., Yoshimori T., Ohsumi Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker // Mol. Biol. Cell. 2004. V. 15. № 3. P. 1101–1111. doi: 10.1091/mbc.e03-09-0704
  101. Mizushima N., Yoshimori T., Levine B. Methods in mammalian autophagy research // Cell. 2010. V. 140. P. 313–326. doi: 10.1016/j.cell.2010.01.028
  102. Mizushima N., Komatsu M. Autophagy: renovation of cells and tissues // Cell. 2011. V. 147. P. 728–741. doi: 10.1016/j.cell.2011.10.026
  103. Mizushima N., Yoshimori T., Ohsumi Y. The role of Atg proteins in autophagosome formation // Annu. Rev. Cell Dev. Biol. 2011. V. 27. P. 107–132. doi: 10.1146/annurev-cellbio-092910-154005
  104. Mizushima N. A brief history of autophagy from cell biology to physiology and disease // Nat. Cell Biol. 2018. V. 20. № 5. P. 521–527. doi: 10.1038/s41556-018-0092-5
  105. Mo Y., Sun Y.Y., Liu K.Y. Autophagy and inflammation in ischemic stroke // Neural Regen. Res. 2020. V. 15. № 8. P. 1388–1396. doi: 10.4103/1673-5374.274331
  106. Nakai A., Yamaguchi O., Takeda T. et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress // Nat. Med. 2007. V. 13. P. 619–624. doi: 10.1038/nm1574
  107. Nakatogawa H., Suzuki K., Kamada Y., Ohsumi Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast // Nat. Rev. Mol. Cell Biol. 2009. V. 10. № 7. P. 458–467. doi: 10.1038/nrm2708
  108. Nguyen T.N., Padman B.S., Lazarou M. Deciphering the molecular signals of PINK1/Parkin mitophagy // Trends Cell Biol. 2016. V. 26. P. 733–744. doi: 10.1016/j.tcb.2016.05.008
  109. Nikoletopoulou V., Markaki M., Palikaras K., Tavernarakis N. Crosstalk between apoptosis, necrosis and autophagy // Biochim. Biophys. Acta. 2013. V. 1833. P. 3448–3459. doi: 10.1016/j.bbamcr.2013.06.001
  110. Nikoletopoulou V., Sidiropoulou K., Kallergi E., Dalezios Y., Tavernarakis N. Modulation of autophagy by BDNF underlies synaptic plasticity // Cell Metab. 2017. V. 26. P. 230–242. doi: 10.1016/j.cmet.2017.06.005
  111. Nixon R.A., Yang D.S., Lee J.H. Neurodegenerative lysosomal disorders: a continuum from development to late age // Autophagy. 2008. V. 4. № 5. P. 590–599. doi: 10.4161/auto.6259
  112. Onodera J., Ohsumi Y. Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation // J. Biol. Chem. 2005. V. 280. № 36. P. 31582–31586. doi: 10.1074/jbc.M506736200
  113. Ozcelik S., Fraser G., Castets P. et al. Rapamycin attenuates the progression of tau pathology in P301S tau transgenic mice // PLoS One. 2013. V. 8. № 5. e62459. doi: 10.1371/journal.pone.0062459
  114. Pandey K., Yu X., Steinmetz A., Alberini C. Autophagy coupled to translation is required for long-term memory // Autophagy. 2020. V. 17. № 7. P. 1614–1635. doi: 10.1080/15548627.2020.1775393
  115. Park H., Poo M.M. Neurotrophin regulation of neural circuit development and function // Nat. Rev. Neurosci. 2013. V. 14. № 1. P. 7–23. doi: 10.1038/nrn3379
  116. Parsons R.G., Gafford G.M., Helmstetter F.J. Translational control via the mammalian target of rapamycin pathway is critical for the formation and stability of long-term fear memory in amygdala neurons // J. Neurosci. 2006. V. 26. № 50. P. 12977–12983. doi: 10.1523/JNEUROSCI.4209-06.2006
  117. Pattingre S., Espert L., Biard-Piechaczyk M., Codogno P. Regulation of macroautophagy by mTOR and Beclin 1 complexes // Biochimie. 2008. V. 90. № 2. P. 313–323. doi: 10.1016/j.biochi.2007.08.014
  118. Pitman R.K. Will reconsolidation blockade offer a novel treatment for posttraumatic stress disorder? // Front. Behav. Neurosci. 2011. V. 5. № 11. doi: 10.3389/fnbeh.2011.00011
  119. Puyal J., Vaslin A., Mottier V., Clarke P.G. Postischemic treatment of neonatal cerebral ischemia should target autophagy // Ann. Neurol. 2009. V. 66. № 3. P. 378–389. doi: 10.1002/ana.21714
  120. Quirk G.J., Mueller D. Neural mechanisms of extinction learning and retrieval // Neuropsychopharmacology. 2008. V. 33. № 1. P. 56–72. doi: 10.1038/sj.npp.1301555
  121. Raben N., Hill V., Shea L. et al. Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease // Hum. Mol. Genet. 2008. V. 17. № 24. P. 3897–3908. doi: 10.1093/hmg/ddn292
  122. Rami A., Kögel D. Apoptosis meets autophagy-like cell death in the ischemic penumbra: Two sides of the same coin? // Autophagy. 2008. V. 4. № 4. P. 422–426. doi: 10.4161/auto.5778
  123. Rami A., Langhagen A., Steiger S. Focal cerebral ischemia induces upregulation of Beclin 1 and autophagy-like cell death // Neurobiol. 2008. V. 29. P. 132–141. doi: 10.1016/j.nbd.2007.08.005
  124. Ravikumar B., Vacher C., Berger Z. et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease // Nat. Genet. 2004. V. 36. № 6. P. 585–595. doi: 10.1038/ng1362
  125. Ravikumar B., Moreau K., Jahreiss L., Puri C., Rubinsztein D.C. Plasma membrane contributes to the formation of pre-autophagosomal structures // Nat. Cell Biol. 2010. V. 12. № 8. P. 747–757. doi: 10.1038/ncb2078
  126. Rodríguez-Navarro J.A., Rodríguez L., Casarejos M.J. et al. Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation // Neurobiol. Dis. 2010. V. 39. № 3. P. 423–438. doi: 10.1016/j.nbd.2010.05.014
  127. Rowland A.M., Richmond J.E., Olsen J.G., Hall D.H., Bamber B.A. Presynaptic terminals independently regulate synaptic clustering and autophagy of GABAA receptors in Caenorhabditis elegans // J. Neurosci. 2006. V. 26. P. 1711–1720.doi: 10.1523/JNEUROSCI.2279-05.2006
  128. Rubinsztein D.C., Shpilka T., Elazar Z. Mechanisms of autophagosome biogenesis // Curr. Biol. 2012. V. 22. № 1. P. 29–34. doi: 10.1016/j.cub.2011.11.034
  129. Russell R.C., Tian Y., Yuan H. et al. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase // Nat. Cell Biol. 2013. V. 15. № 7. P. 741–750. doi: 10.1038/ncb2757
  130. Rybnikova E., Samoilov M..Current insights into the molecular mechanisms of hypoxic pre- and postconditioning using hypobaric hypoxia // Front. Neurosci. 2015. V. 9. № 388. doi: 10.3389/fnins.2015.00388
  131. Rybnikova E., Nalivaeva N. Glucocorticoid-dependent mechanisms of brain tolerance to hypoxia // Int. J. Mol. Sci. 2021. V. 22. № 15. P. 7982. doi: 10.3390/ijms22157982
  132. Sainsbury A., Zhang L. Role of the arcuate nucleus of the hypothalamus in regulation of body weight during energy deficit // Mol. Cell Endocrinol. 2010. V. 316. № 2. P. 109–119. doi: 10.1016/j.mce.2009.09.025
  133. Sakai S., Shichita T. Inflammation and neural repair after ischemic brain injury // Neurochem. Int. 2019. V. 130. № 104316. doi: 10.1016/j.neuint.2018.10.013
  134. Samoilov M., Churilova A., Gluschenko T., Rybnikova E. Neocortical pCREB and BDNF expression under different modes of hypobaric hypoxia: role in brain hypoxic tolerance in rats // Acta Histochem. 2014. V. 116. № 5. P. 949–957. doi: 10.1016/j.acthis.2014.03.009
  135. Shehata M., Matsumura H., Okubo-Suzuki R., Ohkawa N., Inokuchi K. Neuronal stimulation induces autophagy in hippocampal neurons that is involved in AMPA receptor degradation after chemical long-term depression // J. Neurosci. 2012. V. 32. № 30. P. 10413–10422. doi: 10.1523/JNEUROSCI.4533-11.2012
  136. Shehata M., Inokuchi K. Does autophagy work in synaptic plasticity and memory? // Rev. Neurosci. 2014. V. 25. № 4. P. 543–557. doi: 10.1515/revneuro-2014-0002
  137. Shehata M., Abdou K., Choko K. et al. Autophagy enhances memory erasure through synaptic destabilization // J. Neurosci. 2018. V. 38. P. 3809–3822. doi: 10.1523/JNEUROSCI.3505-17.2018
  138. Shen W., Ganetzky B. Autophagy promotes synapse development in Drosophila // J. Cell Biol. 2009. V. 187. № 1. P. 71–79. doi: 10.1083/jcb.200907109
  139. Sheng R., Zhang L.S., Han R. et al. Autophagy activation is associated with neuroprotection in a rat model of focal cerebral ischemic preconditioning // Autophagy. 2010. V. 6. № 4. P. 482–494. doi: 10.4161/auto.6.4.11737
  140. Shepherd J.D., Huganir R.L. The cell biology of synaptic plasticity: AMPA receptor trafficking // Annu. Rev. Cell. Dev. Biol. 2007. V. 23. P. 613–643. doi: 10.1146/annurev.cellbio.23.090506.123516
  141. Shi R., Weng J., Zhao L. et al. Excessive autophagy contributes to neuron death in cerebral ischemia // CNS Neurosci. Ther. 2012. V. 18. № 3. P. 250–260. doi: 10.1111/j.1755-5949.2012.00295.x
  142. Sidibe D.K., Vogel M.C., Maday S. Organization of the autophagy pathway in neurons // Curr. Opin. Neurobiol. 2022. V. 75. № 102554. doi: 10.1016/j.conb.2022.102554
  143. Singh R. Autophagy and regulation of lipid metabolism // Results Probl, Cell Differ. 2010. V. 52. P. 35–46 doi: 10.1007/978-3-642-14426-4_4.
  144. Son J.H., Shim J.H., Kim K.H., Ha J.Y., Han J.Y. Neuronal autophagy and neurodegenerative diseases // Exp. Mol. Med. 2012. V. 44. № 2. P. 89–98. doi: 10.3858/emm.2012.44.2.031
  145. Soukup S-F., Kuenen S., Vanhauwaert R. et al. A LRRK2-dependent endophilinA phosphoswitch is critical for macroautophagy at presynaptic terminals // Neuron. 2016. V. 92. P. 829–844. doi: 10.1016/j.neuron.2016.09.037
  146. Spruston N. Pyramidal neurons: dendritic structure and synaptic integration // Nat. Rev. Neurosci. 2008. V. 9. P. 206–221. https://doi.org/10.1038/nrn2286
  147. Stavoe A.K., Hill S.E., Hall D.H., Colon-Ramos D.A. KIF1A/UNC-104 transports ATG-9 to regulate neurodevelopment and autophagy at synapses // Dev. Cell. 2016. V. 38. P. 171–185. doi: 10.1016/j.devcel.2016.06.012
  148. Stoica L., Zhu P.J., Huang W. et al. Selective pharmacogenetic inhibition of mammalian target of Rapamycin complex I (mTORC1) blocks long-term synaptic plasticity and memory storage // Proc. Natl. Acad. Sci. USA. 2011. V. 108. № 9. P. 3791–3796. doi: 10.1073/pnas.1014715108
  149. Suzuki K., Ohsumi Y. Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae // FEBS Lett. 2007. V. 581. № 11. P. 2156–2161. doi: 10.1016/j.febslet.2007.01.096
  150. Suzuki S.W., Onodera J., Ohsumi Y. Starvation induced cell death in autophagy-defective yeast mutants is caused by mitochondria dysfunction // PLoS One. 2011. V. 6. № 2. e17412. doi: 10.1371/journal.pone.0017412
  151. Takamura A., Komatsu M., Hara T. et al. Autophagy-deficient mice develop multiple liver tumors // Genes Dev. 2011. V. 25. № 8. P. 795–800. doi: 10.1101/gad.2016211
  152. Takeshige K., Baba M., Tsuboi S., Noda T., Ohsumi Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction // J. Cell Biol. 1992. V. 119. № 2. P. 301–311. doi: 10.1083/jcb.119.2.301
  153. Tang G., Gudsnuk K., Kuo S.H. et al. Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits // Neuron. 2014. V. 83. № 5. P 1131–1143. doi: 10.1016/j.neuron.2014.07.040.
  154. Tooze S.A., Yoshimori T. The origin of the autophagosomal membrane // Nat. Cell Biol. 2010. V. 12. № 9. P. 831–835. doi: 10.1038/ncb0910-831
  155. Tsukada M., Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae // FEBS Lett. 1993. V. 333. № 1–2. P. 169–174. doi: 10.1016/0014-5793(93)80398-e
  156. Wang T., Martin S., Papadopulos A. et al. Control of autophagosome axonal retrograde flux by presynaptic activity unveiled using botulinum neurotoxin type A // J. Neurosci. 2015. V. 35. № 15. P. 6179–6194. doi: 10.1523/JNEUROSCI.3757-14.2015
  157. Wei Y., Liu M., Li X., Liu J., Li H. Origin of the autophagosome membrane in mammals // Biomed. Res. Int. 2018. V. 2018. № 1012789. doi: 10.1155/2018/1012789
  158. Wullschleger S., Loewith R., Hall M.N. TOR signaling in growth and metabolism // Cell. 2006. V. 124. № 3. P. 471–484. doi: 10.1016/j.cell.2006.01.016
  159. Yan J., Porch M.W., Court-Vazquez B., Bennett M.V.L., Zukin R.S. Activation of autophagy rescues synaptic and cognitive deficits in fragile X mice // Proc. Natl. Acad. Sci. USA. 2018. V. 115. № 41. P. E9707–E9716. doi: 10.1073/pnas.1808247115
  160. Yang Y., Coleman M., Zhang L., Zheng X., Yue Z. Autophagy in axonal and dendritic degeneration // Trends Neurosci. 2013. V. 36. № 7. P. 418–428. doi: 10.1016/j.tins.2013.04.001
  161. Yang Z., Lin P., Chen B. et al. Autophagy alleviates hypoxia-induced blood-brain barrier injury via regulation of CLDN5 (claudin 5) // Autophagy. 2021. V. 17. № 10. P. 3048–3067. doi: 10.1080/15548627.2020.1851897
  162. Yang S., Park D., Manning L. et al. Presynaptic autophagy is coupled to the synaptic vesicle cycle via ATG-9 // Neuron. 2022. V. 110. № 5. P. 824–840.e10. doi: 10.1016/j.neuron.2021.12.031
  163. Young J.E., Martinez R.A., La Spada A.R. Nutrient deprivation induces neuronal autophagy and implicates reduced insulin signaling in neuroprotective autophagy activation // J. Biol. Chem. 2009. V. 284. № 4. P. 2363–2373. doi: 10.1074/jbc.M806088200
  164. Zhang J. Autophagy and mitophagy in cellular damage control // Redox Biol. 2013. V. 1. № 1. P. 19–23. doi: 10.1016/j.redox.2012.11.008
  165. Zhang X., Yan H., Yuan Y. et al. Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance // Autophagy. 2013. V. 9. № 9. P. 1321–1333. doi: 10.4161/auto.25132
  166. Zweifel L.S., Kuruvilla R., Ginty D.D. Functions and mechanisms of retrograde neurotrophin signalling // Nat. Rev. Neurosci. 2005. V. 6. № 8. P. 615–625. doi: 10.1038/nrn1727

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences