Потенциал применения параметра Blue Intensity для оценки климатического отклика радиального прироста деревьев на полуострове Крым
- Авторы: Комарова А.В.1,2, Кукарских В.В.1,3, Бубнов М.О.1, Дэви Н.М.1,4
-
Учреждения:
- Институт экологии растений и животных УрО РАН
- Уральский федеральный университет им. первого Президента России Б.Н. Ельцина
- Сибирский федеральный университет
- Казанский федеральный университет
- Выпуск: № 5 (2023)
- Страницы: 375-386
- Раздел: Статьи
- URL: https://permmedjournal.ru/0367-0597/article/view/671748
- DOI: https://doi.org/10.31857/S0367059723050062
- EDN: https://elibrary.ru/WWGFFU
- ID: 671748
Цитировать
Аннотация
Представлены результаты оценки климатического сигнала, содержащегося в ширине годичных колец, и показателя оптической плотности древесины (Blue Intensity) родственных видов сосен – черной (Pinus nigra Arnold) и пицундской (Pinus brutia Ten), произрастающих на южном побережье полуострова Крым. Показано влияние накопительного эффекта недостатка влаги на радиальный рост и процессы лигнификации поздней древесины изученных видов хвойных. Выявлена специфическая реакция P. nigra в высокогорных районах на условия продолжительной засухи. Продемонстрирована перспективность применения показателя Blue Intensity для дендроклиматических исследований на территории полуострова Крым.
Ключевые слова
Об авторах
А. В. Комарова
Институт экологии растений и животных УрО РАН; Уральский федеральный университет им. первого Президента России Б.Н. Ельцина
Email: nadya@ipae.uran.ru
Россия, 620144, Екатеринбург, ул. 8 Марта, 202/3; Россия, 620002, Екатеринбург, ул. Мира, 19
В. В. Кукарских
Институт экологии растений и животных УрО РАН; Сибирский федеральный университет
Email: nadya@ipae.uran.ru
Россия, 620144, Екатеринбург, ул. 8 Марта, 202/3; Россия, 660041, Красноярск, просп. Свободный, 79
М. О. Бубнов
Институт экологии растений и животных УрО РАН
Email: nadya@ipae.uran.ru
Россия, 620144, Екатеринбург, ул. 8 Марта, 202/3
Н. М. Дэви
Институт экологии растений и животных УрО РАН; Казанский федеральный университет
Автор, ответственный за переписку.
Email: nadya@ipae.uran.ru
Россия, 620144, Екатеринбург, ул. 8 Марта, 202/3; Россия, 420008, Казань, ул. Кремлевская, 18
Список литературы
- Speer J.H. Fundamentals of tree-ring research. Arizona: University of Arizona Press, 2012. 521 p.
- Schweingruber F.H. Tree Rings // Tree Rings. Dordrecht, Boston, London: Kluwer Academic Publishers, 1988. 276 p. https://doi.org/10.1007/978-94-009-1273-1
- Saurer M. The influence of climate on the oxygen isotopes in tree rings // Isotopes in Environmental and Health Studies. 2010. V. 39. № 2. P. 105–112. https://doi.org/10.1080/1025601031000108633
- Sidorova O.V., Saurer M., Myglan V.S. et al. A multi-proxy approach for revealing recent climatic changes in the Russian Altai // Climate Dynamics. 2012. V. 38. № 1–2. P. 175–188. https://doi.org/10.1007/S00382-010-0989-6
- Loader N.J., McCarroll D., Gagen M. et al. Extracting climatic information from stable isotopes in tree rings // Terrestrial Ecology. 2007. V. 1. P. 25–48. https://doi.org/10.1016/S1936-7961(07)01003-2
- Björklund J., Von Arx G., Nievergelt D. et al. Scientific merits and analytical challenges of tree-ring densitometry // Reviews of Geophysics. 2019. V. 15. Art. 16. https://doi.org/10.1029/2019RG000642
- Kirdyanov A.V., Vaganov E.A., Hughes M.K. Separating the climatic signal from tree-ring width and maximum latewood density records // Trees-Structure and Function. 2007. V. 21. № 1. P. 37–44. https://doi.org/10.1007/S00468-006-0094-Y
- McCarroll D., Pettigrew E., Luckman A. et al. Blue reflectance provides a surrogate for latewood density of high-latitude pine tree rings // Arctic, Antarctic, and Alpine Research. 2002. V. 34. № 4. P. 450–453. https://doi.org/10.1080/15230430.2002.12003516
- Campbell R., McCarroll D., Loader N.J. et al. Blue intensity in Pinus sylvestris tree-rings: Developing a new palaeoclimate proxy // Holocene. 2007. V. 17. № 6. P. 821–828. https://doi.org/10.1177/0959683607080523
- Rydval M., Larsson L.A., McGlynn L. et al. Blue intensity for dendroclimatology: Should we have the blues? Experiments from Scotland // Dendrochronologia. 2014. V. 32. № 3. P. 191–204. https://doi.org/10.1016/j.dendro.2014.04.003
- Fukazawa K. Ultraviolet microscopy. Springer, Berlin, Heidelberg, 1992. P. 110–121. https://doi.org/10.1007/978-3-642-74065-7_8
- Blake S.A.P., Palmer J.G., Björklund J. et al. Palaeoclimate potential of New Zealand Manoao colensoi (silver pine) tree rings using Blue-Iintensity (BI) // Dendrochronologia. 2020. V. 60. Art. 125664. https://doi.org/10.1016/j.dendro.2020.125664
- Tsvetanov N., Dolgova E., Panayotov M. First measurements of Blue intensity from Pinus peuce and Pinus heldreichii tree rings and potential for climate reconstructions // Dendrochronologia. 2020. V. 60. Art. 125681. https://doi.org/10.1016/J.DENDRO.2020.125681
- Vincent J.F.V. From cellulose to cell // Journal of Experimental Biology. 1999. V. 202. № 23. P. 3263–3268. https://doi.org/10.1242/jeb.202.23.3263a
- Yan C., Yin M., Zhang N. et al. Stone cell distribution and lignin structure in various pear varieties // Scientia Horticulturae. 2014. V. 174. № 1. P. 142–150. https://doi.org/10.1016/j.scienta.2014.05.018
- Björklund J.A., Gunnarson B.E., Seftigen K. et al. Blue intensity and density from northern Fennoscandian tree rings, exploring the potential to improve summer temperature reconstructions with earlywood information // Climate of the Past. 2014. V. 10. № 2. P. 877–885. https://doi.org/10.5194/cp-10-877-2014
- Wilson R., Rao R., Rydval M. et al. Blue Intensity for dendroclimatology: The BC blues: A case study from British Columbia, Canada // Holocene. 2014. V. 24. № 11. P. 1428–1438. https://doi.org/10.1177/0959683614544051
- Campbell R., McCarroll D., Robertson I. et al. Blue intensity in Pinus sylvestris tree rings: A manual for a new palaeoclimate proxy // Tree-Ring Research. 2011. V. 67. № 2. P. 127–134. https://doi.org/10.3959/2010-13.1
- Gindl W., Grabner M., Wimmer R. The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width // Trees-Structure and Function. 2000. V. 14. № 7. P. 409–414. https://doi.org/10.1007/s004680000057
- Björklund J., Gunnarson B.E., Seftigen K. et al. Using adjusted Blue intensity data to attain high-quality summer temperature information: A case study from Central Scandinavia // Holocene. 2015. V. 25. № 3. P. 547–556. https://doi.org/10.1177/0959683614562434
- Dolgova E. June-september temperature reconstruction in the Northern Caucasus based on Blue intensity data // Dendrochronologia. 2016. V. 39. P. 17–23. https://doi.org/10.1016/J.DENDRO.2020.125681
- Rydval M., Loader N.J., Gunnarson B.E. et al. Reconstructing 800 years of summer temperatures in Scotland from tree rings // Climate Dynamics. 2017. V. 49. № 9–10. P. 2951–2974. https://doi.org/10.1007/s00382-016-3478-8
- Wilson R., D’Arrigo R., Andreu-Hayles L. et al. Experiments based on Blue intensity for reconstructing North Pacific temperatures along the Gulf of Alaska // Climate of the Past. 2017. V. 13. № 8. P. 1007–1022. https://doi.org/10.5194/cp-13-1007-2017
- Wilson R., Anchukaitis K., Andreu-Hayles L. et al. Improved dendroclimatic calibration using Blue intensity in the southern Yukon // Holocene. 2019. V. 29. № 11. P. 1817–1830. https://doi.org/10.1177/0959683619862037
- Seftigen K., Fuentes M., Ljungqvist F.C. et al. Using Blue intensity from drought-sensitive Pinus sylvestris in Fennoscandia to improve reconstruction of past hydroclimate variability // Climate Dynamics. 2020. V. 55. № 3–4. P. 579–594. https://doi.org/10.1007/s00382-020-05287-2
- Vyukhina A.A., Gurskaya M.A. Dendroclimatic potential of Blue intensity-based chronologies of northern Fennoscandia Scots pine // Journal of Siberian Federal University – Biology. 2022. V. 15. № 2. P. 244–263. https://doi.org/10.17516/1997-1389-0385
- Buckley B.M., Hansen K.G., Griffin K.L. et al. Blue Intensity from a tropical conifer’s annual rings for climate reconstruction: An ecophysiological perspective // Dendrochronologia. 2018. V. 50. P. 10–22. https://doi.org/10.1016/j.dendro.2018.04.003
- Wilson R., Allen K., Baker P. et al. Evaluating the dendroclimatological potential of Blue intensity on multiple conifer species from Tasmania and New Zealand // Biogeosciences. 2021. V. 18. № 24. P. 6393–6421. https://doi.org/10.5194/bg-18-6393-2021
- Reid E., Wilson R. Delta Blue intensity vs. maximum density: A case study using Pinus uncinata in the Pyrenees // Dendrochronologia. 2020. V. 61. P. 125706. https://doi.org/10.1016/j.dendro.2020.125706
- Akhmetzyanov L., Sánchez-Salguero R., García-González I. et al. Blue is the fashion in Mediterranean pines: New drought signals from tree-ring density in southern Europe // Science of the Total Environment. 2023. V. 856. P. 159291. https://doi.org/10.1016/j.scitotenv.2022.159291
- Gernandt D.S., Geada López G., Ortiz García S. et al. Phylogeny and classification of Pinus // Taxon. 2005. V. 54. № 1. P. 29–42. https://doi.org/10.2307/25065300
- Plugatar U.V. Forests of the Crimea. Yalta (in Russian): GBU RK “NBS-NTS”, 2015. 385 p.
- Fady B., Semerci H., Vendramin G.G. EUFORGEN Technical guidelines for genetic conservation and use for Aleppo pine (Pinus halepensis) and Brutia pine (Pinus brutia) // Rome: International Plant Genetic Resources Institute, 2003. 6 p.
- Isajev V., Fady B., Semerci H. et al. EUFORGEN Technical guidelines for genetic conservation and use for European black pine (Pinus nigra) // Rome: International Plant Genetic Resources Institute, 2003. 6 p.
- Koval I. Climatic signal in earlywood, latewood and total ring width of crimean pine (Pinus nigra subsp. pallasiana) from Crimean Mountains, Ukraine // Baltic Forestry. 2013. V. 19. № 2. P. 245–251.
- Solomina O., Davi N., D’Arrigo R. et al. Tree-ring reconstruction of Crimean drought and lake chronology correction // Geophysical Research Letters. 2005. V. 32. № 19. P. 1–4. https://doi.org/10.1029/2005GL023335
- Kukarskih V.V., Devi N.M., Surkov A.Y. et al. Climatic responses of Pinus brutia along the Black Sea coast of Crimea and the Caucasus // Dendrochronologia. 2020. V. 64. Art. 125763. https://doi.org/10.1016/j.dendro.2020.125763
- Сидоренко А.В. Геология СССР, Т. VIII. Крым. Геологическое описание. М.: Недра, 1969. 576 с.
- Подгородецкий П.Д. Крым. Природа. Симферополь: Таврия, 1988. 192 с.
- Caudullo G., Welk E., San-Miguel-Ayanz J. Chorological maps for the main European woody species // Data in Brief. 2017. V. 12. P. 662–666. https://doi.org/10.1016/j.dib.2017.05.007
- Ваганов Е.А., Шиятов С.Г., Мазепа В.С. Дендроклиматические исследования в Урало-Сибирской Субарктике. Новосибирск: СО РАН, 1996. 246 с.
- Stokes M., Smiley T. An introduction to tree-ring dating. Chicago, IL: University of Chicago Press, 1996. 73 p.
- Maxwell R.S., Larsson L.A. Measuring tree-ring widths using the CooRecorder software application // Dendrochronologia. 2021. V. 67. P. 125841. https://doi.org/10.1016/J.DENDRO.2021.125841
- Rinn F. Tsap V 3.6 Reference manual: computer program for tree-ring analysis and presentation. Heidelberg, Germany: Bierhelderweg 20, D-69126, 1996. 263 p.
- Grissino-Mayer H.D. Evaluating crossdating accuracy: A manual and tutorial for the computer program COFECHA // Tree-Ring Research. 2001. V. 57. № 2. P. 205–221.
- Cook E.R., Peters K. The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies // Tree-Ring Bulletin. 1981. V. 41. P. 45–53.
- Bunn A.G. A dendrochronology program library in R (dplR) // Dendrochronologia. 2008. V. 26. № 2. P. 115–124. https://doi.org/10.1016/j.dendro.2008.01.002
- R Core Team. R: A Language and Environment for Statistical Computing. 2022.
- Zang C., Biondi F. Treeclim: an R package for the numerical calibration of proxy-climate relationships // Ecography. 2015. V. 38. № 4. P. 431–436. https://doi.org/10.1111/ecog.01335
- Vicente-Serrano S.M., Beguería S., López-Moreno J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index // Journal of Climate. 2010. V. 23. № 7. P. 1696–1718. https://doi.org/10.1175/2009JCLI2909.1
- Sánchez-Salguero R., Camarero J.J., Hevia A. et al. What drives growth of Scots pine in continental Mediterranean climates: Drought, low temperatures or both? // Agricultural and Forest Meteorology. 2015. V. 206. P. 151–162. https://doi.org/10.1016/j.agrformet.2015.03.004
- Kukarskih V. V., Devi N.M., Bubnov M.O. et al. Radial growth of Scots pine in urban and rural populations of Ekaterinburg megalopolis // Dendrochronologia. 2022. V. 74. Art. 125974. https://doi.org/10.1016/J.DENDRO.2022.125974
- Janssen E., Kint V., Bontemps J.D. et al. Recent growth trends of black pine (Pinus nigra J.F. Arnold) in the eastern mediterranean // Forest Ecology and Management. 2018. V. 412. P. 21–28. https://doi.org/10.1016/J.FORECO.2018.01.047
- Silkin P.P., Kirdyanov A.V. The relationship between variability of cell wall mass of earlywood and latewood tracheids in larch tree-rings, the rate of tree-ring growth and climatic changes // Holzforschung. 2003. V. 57. № 1. P. 1–7. https://doi.org/10.1515/HF.2003.001
- Fonti P., Bryukhanova M.V., Myglan V.S. et al. Temperature-induced responses of xylem structure of Larix sibirica (Pinaceae) from the Russian Altay // Americ. J. of Botany. 2013. V. 100. № 7. P. 1332–1343. https://doi.org/10.3732/AJB.1200484
- Eilmann B., Zweifel R., Buchmann N. et al. Drought alters timing, quantity, and quality of wood formation in Scots pine // Journal of Experimental Botany. 2011. V. 62. № 8. P. 2763–2771. https://doi.org/10.1093/jxb/erq443
- Eilmann B., Buchmann N., Siegwolf R. et al. Fast response of Scots pine to improved water availability reflected in tree-ring width and δ 13C // Plant, Cell and Environment. 2010. V. 33. № 8. P. 1351–1360. https://doi.org/10.1111/j.1365-3040.2010.02153.x
- López R., Cano F.J., Rodríguez-Calcerrada J. et al. Tree-ring density and carbon isotope composition are early-warning signals of drought-induced mortality in the drought tolerant Canary Island pine // Agricultural and Forest Meteorology. 2021. V. 310. Art. 108634. https://doi.org/10.1016/j.agrformet.2021.108634
- Li X., Xi B., Wu X. et al. Unlocking drought-induced tree mortality: physiological mechanisms to modeling // Frontiers in Plant Science. 2022. V. 13. Art. 822. https://doi.org/10.3389/fpls.2022.835921
- Pompa-García M., Hevia A., Camarero J.J. Minimum and maximum wood density as proxies of water availability in two Mexican pine species coexisting in a seasonally dry area // Trees-Structure and Function. 2021. V. 35. № 2. P. 597–607. https://doi.org/10.1007/s00468-020-02062-y
- Camarero J.J., Hevia A. Links between climate, drought and minimum wood density in conifers // IAWA Journal. 2020. V. 41. № 2. P. 236–255. https://doi.org/10.1163/22941932-bja10005
Дополнительные файлы
