Variability of hematological parameters in murid rodents of different ecological specialization

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The variability of adaptations to inhabit hypoxia conditions is determined both by its duration and by the presence or absence of concomitant hypercapnia. One of the key parameters shaping these adaptations is the blood oxygen capacity, which, in addition to the affinity of hemoglobin to oxygen, is determined by the number and size of red blood cells, their hemoglobin content and other related characteristics. However, the evolutionary patterns of hematological variability are still unclear. A multidimensional analysis of hemograms in 12 species of murid rodents of various ecological specialization showed the presence of three main factors determining its variability. The first factor is determined by the number of red blood cells, the amount of hemoglobin and hematocrit, the second by the volume of red blood cells and the content of hemoglobin in them, and the third by the concentration of hemoglobin in the blood. The red blood cell volume and hemoglobin content in the northern and zaisan mole voles, specialized for underground life, and the burrowing Dzungarian hamster were significantly higher than in rock voles, capable of living at high altitudes. It can be assumed that the formation of structural adaptations to hypoxia depends on whether it is accompanied by hypercapnia, as in fossorial and subterranean species, or not – as in species living in mountains. At the same time, a significant range of variability of the considered indexes in ecologically and taxonomically related species does not allow us to draw common microevolutionary regularities basing on the available material.

Full Text

Restricted Access

About the authors

L. L. Matskalo

Institute of Systematics and Ecology of Animals of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State Agrarian University

Email: eug-nov5@yandex.ru
Russian Federation, 11, Frunze St., Novosibirsk, 630091; 130, Dobrolyubov St., Novosibirsk, 630039

O. I. Sebezhko

Novosibirsk State Agrarian University

Email: eug-nov5@yandex.ru
Russian Federation, 130, Dobrolyubov St., Novosibirsk, 630039

I. A. Vasilyev

Institute of Systematics and Ecology of Animals of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State Agrarian University

Email: eug-nov5@yandex.ru
Russian Federation, 11, Frunze St., Novosibirsk, 630091; 130, Dobrolyubov St., Novosibirsk, 630039

P. A. Zadubrovsky

Institute of Systematics and Ecology of Animals of the Siberian Branch of the Russian Academy of Sciences

Email: eug-nov5@yandex.ru
Russian Federation, 11, Frunze St., Novosibirsk, 630091

O. F. Potapova

Institute of Systematics and Ecology of Animals of the Siberian Branch of the Russian Academy of Sciences

Email: eug-nov5@yandex.ru
Russian Federation, 11, Frunze St., Novosibirsk, 630091

E. A. Novikov

Institute of Systematics and Ecology of Animals of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State Agrarian University

Author for correspondence.
Email: eug-nov5@yandex.ru
Russian Federation, 11, Frunze St., Novosibirsk, 630091; 130, Dobrolyubov St., Novosibirsk, 630039

References

  1. Lashof D.A., Ahuja D.R. Relative contributions of greenhouse gas emissions to global warming // Nature. 1990. № 344. P. 529–531. https://doi.org/10.1038/344529a0
  2. Nunes L.J. The rising threat of atmospheric CO2: a review on the causes, impacts, and mitigation strategies // Environments. 2023. V. 10. № 4. P. 2–22. https://doi.org/10.3390/environments10040066
  3. Prentice I.C., Farquhar G.D., Fasham M.J. R. et al. The carbon cycle and atmospheric carbon dioxide. Climate change 2001: the scientific basis, Intergovernmental panel on climate change // UK: Cambridge. Cambridge University Press, 2001. P. 185–237.
  4. McNeil B.I., Sasse T.P. Future ocean hypercapnia driven by anthropogenic amplification of the natural CO2 cycle // Nature. 2016. V. 529. № 7586. P. 383–386. https://doi.org/10.1038/nature16156
  5. Milroy C.M. Deaths from environmental hypoxia and raised carbon dioxide // Academic Forensic Pathology. 2018. V. 8. № 1. P. 2–7. https://doi.org/10.23907/2018.001
  6. Jacobson T.A., Kler J.S., Hernke M.T. et al. Direct human health risks of increased atmospheric carbon dioxide // Nature Sustainability. 2019. V. 2. № 8. P. 691–701. https://doi.org/10.1038/s41893-019-0323-1
  7. Storz J.F. Hemoglobin function and physiological adaptation to hypoxia in high-altitude mammals //Journal of Mammalogy. 2007. V. 88. № 1. P. 24–31. https://doi.org/10.1644/06-MAMM-S-199R1.1
  8. Arieli R. Adaption of the mammalian gas transport system to subterranean life // Progress in Clinical and Biological Research. 1990. V. 335. P. 251–268.
  9. Nevo E. Mosaic evolution of subterranean mammals: regression, progression, and global convergence. N.Y.: Oxford University Press, 1999. 599 p. https://doi.org/10.1093/oso/9780198575726.001.0001
  10. Ramirez J.M., Folkow L.P., Blix A.S. Hypoxia Tolerance in Mammals and Birds: From the Wilderness to the Clinic // Annual Review of Physiology. 2007. V. 69. P. 113–143. https://doi.org/10.1146/annurev.physiol.69.031905.163111
  11. Галанцев В.П. Анатомо-физиологическая адаптация ондатры и водяной полевки к полуводному образу жизни и нырянию // Труды Научно-исследовательского сельскохозяйственного института Крайнего Севера. Красноярск, 1967. Т. 14. С. 97–116.
  12. Галанцев В.П. Эволюция адаптаций ныряющих животных. Л.: Наука, 1977. 191 с.
  13. Clausen G., Ersland A. The respiratory properties of the blood of two diving rodents, the beaver and the water vole // Respiration Physiology. 1968. V. 5. P. 350–359.
  14. Lechner A.J. Respiratory adaptations in burrowing pocket gophers from sea level and high altitudes // Journal of Applied Physiology. 1976. V. 41. № 2. P. 168–173.
  15. Большаков В.Н. Пути приспособления мелких млекопитающих к горным условиям. М.: Наука, 1972. 200 с.
  16. Hayes J.P. Field and maximal metabolic rates of deer mice (Peromyscus maniculatus) at low and high altitudes // Physiological Zoology. 1989. V. 62. № 3. P. 732–744.
  17. Боттаева З.Х., Темботова Ф.А., Емкужева М.М. и др. Влияние эколого-географических факторов в широтно-долготном градиенте на систему «красной» крови автохтона Кавказа – гудаурской полевки (Chionomys gud) // Экология. 2019. № 1. P. 30–39. doi: 10.1134/S0367059719010013
  18. Beall C.M. Tibetan and andean patterns of adaptation to high-аltitude hypoxia // Human Biology. 2000. V. 72. № 1. P. 201–228.
  19. Наумов Н.П. Очерки сравнительной экологии мышевидных грызунов. М.; Л.: Изд-во АН СССР, 1948. 204 с.
  20. Башенина Н.В. Пути адаптаций мышевидных грызунов. М.: Наука, 1977. 355 с.
  21. Громов И.М., Поляков И.Я. Фауна СССР. Млекопитающие. Полевки. Л.: Наука, 1977. Т. 3. Вып. 8. 504 с.
  22. Воронцов Н.Н. Фауна СССР. Млекопитающие. Низшие хомякообразные мировой фауны. Л.: Наука, 1982. Т. 3. Вып. 6. 505 с.
  23. Kryštufek B., Shenbrot G. Voles and lemmings (Arvicolinae) of the palaearctic region. University of Maribor, University Press, 2022. 449 p.
  24. Samaja M., Crespi T., Guazzi M., Vandegriff K.D. Oxygen transport in blood at high altitude: role of the hemoglobin-oxygen affinity and impact of the phenomena related to hemoglobin allosterism and red cell function // European Journal of Applied Physiology. 2003. V. 90. P. 351–359. https://doi.org/10.1007/s00421-003-0954-8
  25. Jensen B., Storz J.F., Fago A. Bohr effect and temperature sensitivity of hemoglobins from highland and lowland deer mice // Comp. Biochem. Physiol. Part A: Mol. Integr. Physiol. 2016. V. 195. P. 10–14. https://doi.org/10.1016/j.cbpa.2016.01.018
  26. Dzal Y.A., Jenkin S.E., Lague S.L. et al. Oxygen in demand: How oxygen has shaped vertebrate physiology // Comp. Biochem. Physiol. Part A: Mol. Integr. Physiol. 2015. V. 186. P. 4–26. https://doi.org/10.1016/j.cbpa.2014.10.029
  27. Kizhina A.G., Kalinina S.N., Uzenbaeva L.B. et al. Comparative study of erythrocyte morphology and size in relation to ecophysiological adaptations in Rodentia species // Russian Journal of Theriology. 2020. V. 19. №. 2. P. 161–171. doi: 10.15298/rusjtheriol.19.2.06.
  28. Тарахтий Э.А., Давыдова Ю.А., Кшнясев И.А. Межгодовая изменчивость показателей системы крови флуктуирующей популяции европейской рыжей полевки (Clethrionomys glareolus) // Изв. РAH. Серия биологич. 2007. №. 6. С. 755–764.
  29. Тарахтий Э.А., Сумин М.Н., Давыдова Ю.А. Изменчивость показателей «красной» крови рыжей полевки (Clethrionomys glareolus) в зависимости от сезона и репродуктивного состояния особей // Успехи современной биологии. 2009. Т. 129. №. 2. С. 191–197.
  30. Тарахтий Э.А., Мухачева С.В. Реакция системы крови лесных полевок на стресс на фоне хронического химического загрязнения среды // Успехи соврем. биол. 2011. Т. 131. № 6. С. 613–621.
  31. Promislow D.E.L. The evolution of mammalian blood parameters: Patterns and their interpretation // Physiological Zoology. 1991. V. 64. P. 393–431. https://doi.org/10.1086/physzool.64.2.30158183
  32. Garland T. Jr., Harvey P. H., Ives A.R. Procedures for the analysis of comparative data using phylogenetically independent contrasts // Syst. Biol. 1992. V. 41. № 1. P. 18–32.
  33. Тарахтий Э.А., Жигальский О.А. Исследование системы крови мелких млекопитающих, обитающих на территориях с низкой плотностью радиационного загрязнения // Успехи соврем. биол. 2014. Т. 134. № 4. С. 424–432.
  34. Santos E.W., de Oliveira D.C., Hastreiter A. et al. Hematological and biochemical reference values for C57BL/6, Swiss Webster and BALB/c mice // Brazilian J. of Veterinary Research and Animal Sci. 2016. V. 53. № 2. P. 138–145.
  35. Silva‐Santana G., Bax J.C., Fernandes D.C.S. et al. Clinical hematological and biochemical parameters in Swiss, BALB/c, C57BL/6 and B6D2F1 Mus musculus // Animal Models and Experimental Medicine. 2020. V. 3. № 4. P. 304–315. https://doi.org/10.1002/ame2.12139
  36. Литвинов Ю.Н., Абрамов С.А., Дупал Т.А. и др. Формирование ареалов и филогения скальных полевок в условиях внутренней Азии // Вестник ИРГСХА. 2017. № 82. С. 96–103.
  37. Bakloushinskaya I., Lyapunova E.A., Saidov A.S. et al. Rapid chromosomal evolution in enigmatic mammal with XX in both sexes, the Alay mole vole Ellobius alaicus Vorontsov et al., 1969 (Mammalia, Rodentia) // Comparative Cytogenetics. 2019. V. 13. № 2. Art. 147. https://doi.org/10.3897/CompCytogen.v13i2.34224
  38. Heldmaier G., Steinlechner S. Seasonal pattern and energetics of short daily torpor in the Djungarian hamster, Phodopus sungorus //Oecologia. 1981. V. 48. № 2. P. 265–270. https://doi.org/10.1007/BF00347975
  39. Новиков Е.А., Васильев И.А., Задубровский П.А. и др. Изменчивость биоэнергетических показателей у мышевидных грызунов различной экологической специализации // Журнал общ. биол. 2024. Т. 85. № 2. С. 150–162. doi: 10.31857/S0044459622060069
  40. Snyder G.K. Influence of temperature and hematocrit on blood viscosity // American J. of Physiology-Legacy Content. 1971. V. 220. № 6. P. 1667–1672.
  41. Rosenmann M., Morrison P.R. Metabolic response of highland and lowland rodents to simulated high altitudes and cold // Comparative Biochemistry and Physiology. Part A: Physiology. 1975. V. 51. № 3. P. 523–530.
  42. Шварц С.С. Экологические закономерности эволюции. М.: Наука, 1980. 278 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Distribution of studied species of rodents in the space of variability factors.

Download (58KB)
3. Fig. 2. Distribution of studied species of rodents in the space of variability factors.

Download (56KB)
4. Fig. 3. Distribution of studied species of rodents in the space of variability factors.

Download (51KB)

Copyright (c) 2025 Russian Academy of Sciences