Increasing the efficiency of plasma mass separation by optimizing the electric potential
- Autores: Oiler A.P.1,2, Usmanov R.A.1, Antonov N.N.1, Gavrikov A.V.1, Smirnov V.P.1
-
Afiliações:
- Joint Institute for High Temperatures, Russian Academy of Sciences
- Moscow Institute of Physics and Technology (National Research University)
- Edição: Volume 50, Nº 5 (2024)
- Páginas: 563-571
- Seção: ДВИЖЕНИЕ ЗАРЯЖЕННЫХ ЧАСТИЦ
- URL: https://permmedjournal.ru/0367-2921/article/view/668766
- DOI: https://doi.org/10.31857/S0367292124050059
- EDN: https://elibrary.ru/PWKILF
- ID: 668766
Citar
Texto integral
Resumo
The effect of the spatial distribution of electric potential on the separating properties of the plasma mass separator that operates in a configuration with crossed radial electric and longitudinal magnetic fields is studied. The single-particle approximation is used to obtain analytical expressions that connect the electric potential distribution and the angular mass spectrum. A mathematical algorithm is described that allows one to recover the distribution of electric potential from the given shape of the mass spectrum. It is shown that the local inhomogeneity of the electric potential profile allows one to achieve the deposition of mass groups in the diametrically opposite regions of the separator. Data is presented that confirms the possibility of creating experimentally both the positive and the negative local inhomogeneity of the potential. The results of this work can be used to increase the efficiency of the process of plasma mass separation of ions of different elements.
Sobre autores
A. Oiler
Joint Institute for High Temperatures, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)
Autor responsável pela correspondência
Email: andrey_oiler@jiht.ru
Rússia, Moscow, 125412; Dolgoprudny, Moscow oblast, 141700
R. Usmanov
Joint Institute for High Temperatures, Russian Academy of Sciences
Email: andrey_oiler@jiht.ru
Rússia, Moscow, 125412
N. Antonov
Joint Institute for High Temperatures, Russian Academy of Sciences
Email: andrey_oiler@jiht.ru
Rússia, Moscow, 125412
A. Gavrikov
Joint Institute for High Temperatures, Russian Academy of Sciences
Email: andrey_oiler@jiht.ru
Rússia, Moscow, 125412
V. Smirnov
Joint Institute for High Temperatures, Russian Academy of Sciences
Email: andrey_oiler@jiht.ru
Rússia, Moscow, 125412
Bibliografia
- Стратегия развития атомной энергетики России в первой половине XXI века. Основные положения. Одобрена Правительством РФ 25.05.2000 г. М.: Минатом России, 2000.
- Jang J., Kim T., Kim G.-Y., D., Lee S. // J. Nucl. Mater. 2019. V. 520. P. 245. Doi.org/10.1016/j.jnucmat.2019.04.024
- Volkovich V.A., Maltsev D.S., Soldatova M.N., Ryzhov A.A., Ivanov A.B. // Metals (Basel). 2021. V. 11. № 4. P. 550. Doi.org/10.3390/met11040550
- Williamson M.A., Willit J.L. // Nucl. Eng. Technol. 2011. V. 43. P. 329. Doi.org/10.5516/NET.2011.43.4.329
- Dolgolenko D.A., and Muromkin Yu.A. // Phys.-Usp.+. 2009. V. 179. P. 369, Doi.org/10.3367/UFNe.0179.200904c.0369
- Zweben S.J., Gueroult R., Fisch N.J. // Phys. Plasmas. 2018. V. 25. № 9. Doi.org/10.1063/1.5042845
- Martynenko Yu.V. // Phys.-Usp.+. 2009. V. 179. P. 1354. doi.org/10.3367/UFNe.0179.200912n.1354
- Zhang Y., Su R., Chen X., Ren C., Lv Y., Mo D., Liu M., Yan S. // J. Radioanal Nucl. Ch. 2019. V. 322. P. 1657–1662. Doi.org/10.1007/s10967-019-06745-w
- Ohkawa T., Miller R.L. // Phys. Plasmas. 2002. V. 9. P. 5116. Doi.org/10.1063/1.1523930
- Liziakin G., Antonov N., Smirnov V.S., Timirkhanov R., Oiler A., Usmanov R., Melnikov A., Vorona N., Kislenko S., Gavrikov A., Smirnov V.P. // J. Phys. D Appl. Phys. 2021. V. 54. Doi.org/10.1088/1361-6463/ac128e
- Smirnov V.P., Samokhin A.A., Vorona N.A., Gavrikov A. V. // Plasma Phys. Reports. 2013. V. 39. P. 456. Doi.org/10.1134/S1063780X13050103
- Bardakov V.M., Ivanov S.D., Strokin N.A. // Phys. Plasmas. 2014. V. 21. № 3. Doi.org/10.1063/1.4846898
- Gueroult R., Rax J.-M., Fisch N J // Phys. Plasmas. 2014. V. 21. № 2. Doi.org/10.1063/1.4864325
- Trotabas B., Gueroult R. // Plasma Sources Sci. T. 2022. V. 31. № 2. Doi.org/10.1088/1361-6595/ac4847
- Liziakin G., Oiler A., Gavrikov A., Antonov N., Smirnov V. // J. Plasma Phys. 2021. V. 87. № 4. Doi.org/10.1017/S0022377821000829
- Jin S., Poulos M.J., Van Compernolle B., Morales G. J. // Phys. Plasmas. 2019. V. 26. № 2. Doi.org/10.1063/1.5063597
- Volosov V.I., Pekker M.S. // Nuclear Fusion. 1981. V. 21. №. 10. P. 1275. doi: 10.1088/0029-5515/21/10/006
- Morozov A.I. Introduction to plasma dynamics. CRC Press, 2012.
- Liziakin G.D., Antonov N.N., Vorona N.A., Gavrikov A.V., Kislenko S. A., Kuzmichev S.D., Melnikov A.D., Oiler A.P., Smirnov V.P., Timirkhanov R.A., Usmanov R.A. // Plasma Phys. Reports. 2022. V. 48. P. 1251–60. Doi.org/S1063780X22601912
- Liziakin G., Antonov N., Usmanov R., Melnikov A., Timirkhanov R., Vorona N., Smirnov V. S., Oiler A., Kislenko S., Gavrikov A., Smirnov V. P. // Plasma Phys. Control. Fus. 2021. V. 63. №. 3. Doi.org/10.1088/1361-6587/abd25e
- Samokhin A.A., Liziakin G.D., Gavrikov A.V., Usmanov R.A., Smirnov V.P. // Journal of Physics: Conference Series. 2016. V. 774. № 1. Doi.org/10.1088/1742-6596/774/1/012198
- Oiler A.P., Liziakin G.D., Gavrikov A.V., Smirnov V. P. // Molecules. 2022. V. 27. P. 6824. Doi.org/10.3390/molecules27206824
- Brillouin L. // Phys. Rev. 1945. V. 67. P. 260. Doi.org/10.1103/PhysRev.67.260
- Bracewell R. // The Fourier transform and its application, 3rd ed. 2000. Singapore: McGrow-Hill Book Co-Singapore, ISBN 0-07-303938-1
- Gueroult R., Rax J.-M., Fisch N.J.// Phys. Plasmas. 2019. V. 26. № 12. Doi.org/10.1063/1.5126083
- Sheehan J.P., Hershkowitz N.// Plasma Sources Sci. T. 2011. V. 20. № 6. Doi.org/10.1088/0963-0252/20/6/063001
- Murzaev Y., Liziakin G., Gavrikov A., Timirkhanov R., Smirnov V. // Plasma Sci. Technol. 2019. V. 21. № 4, Doi.org/10.1088/2058-6272/aaf250
Arquivos suplementares
