Dependence of Sputtering Coefficient on Energy and Incidence Angle of Bombarding Particles. Energy Spectrum and Average Energy of Sputtered Particles by the Example of a Tungsten Target

Capa

Citar

Texto integral

Resumo

The work provides an overview of the functional dependencies (formulas) for describing the properties of atomic particles sputtered during ion bombardment of the surface of a solid body. The dependence of sputtering coefficients on the energy and angle of incidence of the bombarding particle is considered. The energy spectra and average energies of sputtered particles are presented. Using the example of a target made of tungsten and hydrogen isotopes as projectiles, formulas for calculating the quantities under consideration are proposed. These data are necessary to estimate the entry of sputtered tungsten atoms as an impurity into a hot plasma using transport codes. When the tungsten impurity concentration is more than critical, it is impossible to carry out a controlled thermonuclear reaction with the planned energy output in the ITER tokamak reactor. Sputtering coefficients also play an important role in modeling the entry of impurities into plasma installations as a result of the interaction of hydrogen fuel atoms with the materials of the divertor and the first wall.

Sobre autores

P. Babenko

Ioffe Institute

Autor responsável pela correspondência
Email: babenko@npd.ioffe.ru
Rússia, St. Petersburg

V. Mikhailov

Ioffe Institute

Email: babenko@npd.ioffe.ru
Rússia, St. Petersburg

A. Shergin

Ioffe Institute

Email: babenko@npd.ioffe.ru
Rússia, St. Petersburg

A. Zinoviev

Ioffe Institute

Email: babenko@npd.ioffe.ru
Rússia, St. Petersburg

Bibliografia

  1. Mikhailov V.S., Babenko P.Yu., Shergin A.P., Zinoviev A.N. // Plasma Physics Reports. 2024. V. 50. № 1. P. 23. doi: 10.1134/S1063780X23601682
  2. Field A.R., Casson F.J., Fajardo D., Angioni C., Challis C.D., Hobirk J., Kappatou A., Kim Hyun-Tae, Lerche E., Loarte A., Mailloux J. // Nucl. Fusion. 2023. V. 63, P. 016028. doi: 10.1088/1741-4326/aca54e
  3. Pütterich T., Fable E., Dux R., O’Mullane M., Neu R., Siccinio M. // Nucl. Fusion. 2019. V. 59 № 5. P. 056013. doi: 10.1088/1741-4326/ab0384
  4. Loarte A., Pitts R.A., Wauters T., Nunes I., Köchl F., Polevoi A.R., Kim S.-H., Lehnen M., Artola J., Chen L., Pinches S.D., Bai X., de Vries P., Carvalho I., Dubrov M., Gribov Y., Schneider M., Zabeo L. // ITER Technical Report. ITR-24-004. 2024.
  5. Pitts R.A., Bonnin X., Escourbiac F., Frerichs H., Gunn J.P., Hirai T., Kukushkin A.S., Kaveeva E., Miller M.A., Moulton D., Rozhansky V., Senichenkov I., Sytova E., Schmitz O., Stangeby P.C., De Temmerman G., Veselova I., Wiesen S. // Nucl. Mater. Energy. 2019. V. 20, P. 100696. doi: 10.1016/j.nme.2019.100696
  6. Gao B., Ding R., Xie H., Zeng L., Zhang L., Wang B., Li Ch., Zhu D., Yan R., Chen J. // Fusion Eng. Des. 2020. V. 156, P. 111616. doi: 10.1016/j.fusengdes.2020.111616
  7. Guterl J., Bykov I., Ding R., Snyder P. // Nucl. Mater. Energy. 2021. V. 27, P. 100948. doi: 10.1016/j.nme.2021.100948
  8. Behrisch R., Eckstein W. Sputtering by Particle Bombardment. Berlin: Springer, 2007. doi: 10.1007/978-3-540-44502-9
  9. Михайлов В.С., Бабенко П.Ю., Шергин А.П., Зиновьев А.Н. // ЖЭТФ. 2023. Т. 164. В. 3. С. 478. doi: 10.31857/S004445102309016X
  10. Ziegler J.F., Biersack J.P. SRIM. http://www.srim.org.
  11. Экштайн В. Компьютерное моделирование взаимодействия частиц с поверхностью твердого тела. М.: Мир, 1995.
  12. Bohdansky J. // Nucl. Instr. Meth. B. 1984. V. 2. № 1–3. P. 587. doi: 10.1016/0168-583X(84)90271-4
  13. Falcone G., Gullo F. // Phys. Lett. A. 1987. V. 125. № 8. P. 432. doi: 10.1016/0375-9601(87)90178-2
  14. Yamamura Y., Tawara H. // At. Data Nucl. Data Tables. 1996. V. 62. № 2. P. 149. doi: 10.1006/adnd.1996.0005
  15. Sigmund P. // Phys. Rev. 1969. V. 184. № 2. P. 383. doi: 10.1103/PhysRev.184.383
  16. Фальконе Д. // УФН. 1992. Т. 162. В. 1. С. 71. doi: 10.3367/UFNr.0162.199201c.0071
  17. Wilson W.D., Haggmark L.G., Biersack J.P. // Phys. Rev. B. 1977. V. 15. № 5. P. 2458. doi: 10.1103/PhysRevB.15.2458
  18. Eckstein W., Garcia-Rosales C., Roth J., Ottenberger W. Sputtering Data. IPP report 9/82, Garching: IPP, 1993.
  19. Eckstein W., Preuss R. // J. Nucl. Mater. 2003. V. 320. № 3. P. 209. doi: 10.1016/S0022-3115(03)00192-2
  20. Eckstein W. // Vacuum. 2008. V. 82. № 9. P. 930. doi: 10.1016/j.vacuum.2007.12.004
  21. Бабенко П.Ю., Михайлов В.С., Шергин А.П., Зиновьев А.Н. // ЖТФ. 2023. Т. 93. В. 5. С. 709. doi: 10.21883/JTF.2023.05.55467.12-23
  22. Томпсон М.У. // УФН. 1988. Т. 156. В. 3. С. 513. doi: 10.3367/UFNr.0156.198811d.0513
  23. Wahl M., Wucher A. // Nucl. Instr. Meth. B. 1994. V. 94. № 1–2. P. 36. doi: 10.1016/0168-583X(94)95655-3
  24. Kittel C. Introduction to Solid State Physics. 8th edition. N.Y.: Wiley, 2005.
  25. Eckstein W. Calculated Sputtering, Reflection and Range Values. IPP report 9/132. Garching : IPP, 2002.
  26. Falcone G. // Phys. Rev. B. 1988. V. 38. № 10. P. 6398. doi: 10.1103/PhysRevB.38.6398
  27. Бабенко П.Ю., Михайлов В.С., Зиновьев А.Н. // Письма в ЖТФ. 2024. Т. 50 В. 12. С. 3. doi: 10.61011/PJTF.2024.12.58055.19851
  28. Stuart R.V., Wehner G.K. // J. Appl. Phys. 1962. V. 33. № 7. P. 2345. doi: 10.1063/1.1728959
  29. Somogyvari Z., Langer G.A., Erdelyi G., Balazs L. // Vacuum. 2012. V. 86. № 12. P. 1979. doi: 10.1016/j.vacuum.2012.03.055
  30. Wu Sh.-M., van de Kruijs R., Zoethout E., Bijkerk F. // J. Appl. Phys. 2009. V. 106. № 5. P. 054902. doi: 10.1063/1.3149777
  31. Bohdansky J., Roth J., Bay H.L. // J. Appl. Phys. 1980. V. 51. № 5. P. 2861. doi: 10.1063/1.327954

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024