TRENDS AND ACHIEVEMENTS IN THE STUDY OF THE 𝑝–11B FUSION: A REVIEW
- Autores: Vovkivsky E.G1, Chirkov A.Y.1
-
Afiliações:
- Bauman Moscow State Technical University
- Edição: Volume 51, Nº 1 (2025)
- Páginas: 25-41
- Seção: PLASMA DYNAMICS
- URL: https://permmedjournal.ru/0367-2921/article/view/683759
- DOI: https://doi.org/10.31857/S0367292125010035
- EDN: https://elibrary.ru/DWEOJK
- ID: 683759
Citar
Texto integral
Resumo
The possible use of the aneutronic 𝑝–11B reaction is of interest from the viewpoint of obtaining clean energy. Here, we consider the current studies of the different schemes of implementing this reaction and present the estimates of the limiting energy gain in the plasma at different system parameters. The possibilities of increasing the reaction rate compared to the Maxwellian plasma are discussed. The effect of the accumulation of the alpha particles and the possible means of decreasing it are analyzed.
Palavras-chave
Sobre autores
E. Vovkivsky
Bauman Moscow State Technical UniversityMoscow, Russia
A. Chirkov
Bauman Moscow State Technical University
Email: chirkov@bmstu.ru
Moscow, Russia
Bibliografia
- McKenzie W., Batani D., Mehlhorn T.A., Margarone D., Belloni F., Campbell E.M., Woodruff S., Kirchhoff J., Paterson A., Pikuz S., Hora H. // J. Fusion Energy. 2023. V. 42. P. 17. https://doi.org/10.1007/s10894-023-00349-9
- Weaver T., Zimmerman G., Wood L. Exotic CTR fuel: Non-thermal effects and laser fusion application. Lawrence Livermore Laboratory. California Univ. Livermore. 1973. Report UCRL-74938.
- Moreau D.C. // Nuclear Fusion. 1977. V. 17. P. 13. https://doi.org/10.1088/0029-5515/17/1/002
- Кукушкин А.Б., Коган В.И. // Физика плазмы. 1979. Т. 5. С. 1264.
- McNally J.R. // Nuclear Technol. – Fusion. 1982. V. 2. P. 9. https://doi.org/10.13182/FST2-1-9
- Feldbacher R. Nuclear Reaction Cross Sections and Reactivity Parameter. IAEA, 1987. https://www-nds.iaea.org/publications/nds/iaea-nds-0086/
- Nevins W.M. // J. Fusion Energy. 1998. V. 17. P. 25. https://doi.org/10.1023/A:1022513215080
- Чирков А.Ю. // Ядерная физика и инжиниринг. 2013. Т. 4. С. 1050. https://doi.org/10.1134/S2079562913120075
- nd International Workshop on Proton-Boron Fusion, Rome, Italy, 5–8 September 2022. https://agenda.infn.it/event/30291/timetable/ (дата обращения 12.11.2024).
- Lerner E.J., Hassan S.M., KaramitsosZivkovic I., Fritsch R. // Phys. Plasmas. 2023. V. 30. P. 120602. https://doi.org/10.1063/5.0170216
- Mehlhorn T.A. // Phys. Plasmas. 2024. V. 31. P. 020602. https://doi.org/10.1063/5.0170661
- Putvinski S.V., Ryutov D.D, Yushmanov P.N. // Nuclear Fusion. 2019. V. 59. P. 076018. https://doi.org/10.1088/1741-4326/ab1a60
- Kolmes E.J., Ochs I.E., Fisch N.J. // Phys. Plasmas. 2022. V. 29. P. 110701. https://doi.org/10.1063/5.0119434
- Cai J., Xie H., Li Y., Tuszewski M., Zhou H., Chen P. // Fusion Sci. Technol. 2022. V. 78. P. 149. https://doi.org/10.1080/15361055.2021.1964309
- Chirkov А.Yu., Kazakov K.D. // Plasma. 2023. V. 6. P. 379. https://doi.org/10.3390/plasma6030026
- Cavaignac J.F., Longequeue N., Honda T. // Nuclear Phys. A. 1971. V. 167. P. 207.https://doi.org/10.1016/0375-9474(71)90594-X
- Becker H.W., Rolfs C., Trautvetter H.P. // Zeitschrift für Physik A. Atomic Nuclei. 1987. V. 327. P. 341. https://doi.org/10.1007/bf01284459
- Yamashita Y., Kudo Y. // Nuclear Phys. A. 1995. V. 589. P. 460. https://doi.org/10.1016/0375-9474(95)00069-D
- Nevins W.M., Swain R. // Nuclear Fusion. 2000. V. 40. P. 865. https://doi.org/10.1088/0029-5515/40/4/310
- Sikora M.H., Weller H.R. // J. Fusion Energ. 2016. V. 35. P. 538. https://doi.org/10.1007/s10894-016-0069-y
- Tentori A., Belloni F. // Nuclear Fusion. 2023. V. 63. P. 086001. https://doi.org/10.1088/1741-4326/acda4b
- Dmitriev V.F. // Phys. Atomic Nuclei. 2006. V. 69. P. 1461. https://doi.org/10.1134/S1063778806090043
- Dmitriev V.F. // Phys. Atomic Nuclei. 2009. V. 72. P. 1165. https://doi.org/10.1134/S1063778809070084
- Ahmed M.W., Weller H.R. // J. Fusion Energ. 2014. V. 33. P. 103. https://doi.org/10.1007/s10894-013-9643-8
- Stave S., Ahmed M.W., France R.H., Henshaw S.S., Müller B., Perdue B.A., Prior R.M., Spraker M.C., Weller H.R. // Phys. Lett. B. 2011. V. 696. P. 26. https://doi.org/10.1016/j.physletb.2010.12.015
- Spraker M.C., Ahmed M.W., Blackston M.A., Brown N., France R.H., Henshaw S.S., Perdue B.A., Prior R.M., Seo P.N., Stave S. et al. // J. Fusion Energ. 2012. V. 31. P. 357. https://doi.org/10.1007/s10894-011-9473-5
- Belyaev V.S., Krainov V.P., Zagreev B.V., Matafonov A.P. // Phys. Atomic Nuclei. 2015. V. 78. P. 537. https://doi.org/10.1134/S1063778815040031
- Belyaev V.S., Matafonov A.P., Vinogradov V.I., Krainov V.P., Lisitsa V.S., Roussetski A.S., Ignatyev G.N., Andrianov V.P. // Phys. Rev. E. 2005. V. 72. P. 026406. https://doi.org/10.1103/PhysRevE.72.026406
- Беляев В.С., Матафонов А.П., Андреев С.Н., Тараканов В.П., Крайнов В.П., Лисица В.С., Кедров А.Ю., Загреев Б.В., Русецкий А.С., Борисенко Н.Г., Громов А.И., Лобанов А.В. // Ядерная физика. 2022. Т. 85. С. 34.
- Labaune C., Baccou C., Depierreux S., Goyon C., Loisel G., Yahia V., Rafelski J. // Nature Communications. 2013. V. 4. P. 2506. https://doi.org/10.1038/ncomms3506
- Picciotto A., Margarone D., Velyhan A., Bellutti P., Krasa J., Szydlowsky A., Bertuccio G., Shi Y., Mangione A., Prokupek J. et al. // Phys. Rev. X. 2014. V. 4. P. 031030. https://doi.org/10.1103/PhysRevX.4.031030
- Giuffrida L., Belloni F., Margarone D., Petringa G., Milluzzo G., Scuderi V., Velyhan A., Rosinski M., Picciotto A., Kucharik M. et al. // Phys. Rev. E. 2020. V. 101. P. 013204. https://doi.org/10.1103/PhysRevE.101.013204
- Margarone D., Morace A., Bonvalet J., Abe Y., Kantarelou V., Raffestin D., Giuffrida L., Nicolai P., Tosca M., Picciotto A. et al. // Front. Phys. 2020. V. 8. P. 343. https://doi.org/10.3389/fphy.2020.00343
- Bonvalet J., Nicolaï Ph., Raffestin D., D’humieres E., Batani D., Tikhonchuk V., Kantarelou V., Giuffrida L., Tosca M., Korn G. et al. // Phys. Rev. E. 2021. V. 103. P. 053202. https://doi.org/10.1103/PhysRevE.103.053202
- Margarone D., Bonvalet J., Giuffrida L., Morace A., Kantarelou V., Tosca M., Raffestin D., Nicolai P., Picciotto A., Abe Y. et al. // Appl. Sci. 2022. V. 12. P. 1444. https://doi.org/10.3390/app12031444
- Istokskaia V., Tosca M., Giuffrida L., Psikal J., Grepl F., Kantarelou V., Stancek S., Di Siena S., Hadjikyriacou A., Mcilvenny A., Levy Y., Huynh J., Cimrman M., Pleskunov P., Nikitin D., Choukourov A., Belloni F., Picciotto A., Kar S., Borghesi M., Lucianetti A., Mocek T., Margarone D. // Communications Phys. 2023. V. 6. P. 27. https://doi.org/10.1038/s42005-023-01135-x
- Miley G.H., Hora H. // Nuclear Fusion. 1998. V. 38. P. 1113. https://doi.org/10.1088/0029-5515/38/7/413
- Miley G.H., Hora H., Cicchitelli L., Kasotakis G.V., Stening R.J. // Fusion Technology. 1991. V. 19. P. 43. https://doi.org/10.13182/FST91-A29314
- Hora H., Miley G.H., Ghoranneviss M., Malekynia B., Azizic N., He Xian-Tu. // Energy Environ. Sci. 2010. V. 3. P. 479. https://doi.org/10.1039/B904609G
- Eliezer S., Hora H., Korn G., Nissim N., Martinez Val J.M. // Phys. Plasmas. 2016. V. 23. P. 050704. https://doi.org/10.1063/1.4950824
- Eliezer S., Martinez-Val J.M. // Laser Particle Beams. 2022. V. 38. P. 39. https://doi.org/10.1017/s0263034619000818
- Shmatov M.L. // Phys. Plasmas. 2016. V. 23. P. 050704; Phys. Plasmas. 2016. V. 23. P. 094703. https://doi.org/10.1063/1.4963006
- Shmatov M.L. // Laser Particle Beam 2022. V. 2022. P. 7473118. https://doi.org/10.1155/2022/7473118
- Belloni F., Margarone D., Picciotto A., Schillaci F., Giuffrida L. // Phys. Plasmas. 2018. V. 25. P. 020701. https://doi.org/10.1063/1.5007923
- Belloni F. // Plasma Phys. Controlled Fusion. 2021. V. 63. P. 055020. https://doi.org/10.1088/1361-6587/abf255
- Belloni F. // Laser Particle Beams 2022. V. 2022. P. 3952779. https://doi.org/10.1155/2022/3952779
- Hora H., Eliezer S., Nissim N., Lalousis P. // Matter and Radiation at Extremes. 2017. V. 2. P. 177. https://doi.org/10.1016/j.mre.2017.05.001
- Fujioka S., Zhang Z., Ishihara K., Shigemori K., Hironaka Y., Johzaki T., Sunahara A., Yamamoto N., Nakashima H., Watanabe T. et al. // Sci. Rep. 2013. V. 3. P. 1170. https://doi.org/10.1038/srep01170
- Mehlhorn T.A., Labun L., Hegelich B.M., Margarone D., Gu M.F., Batani D., Campbell E.M., Hu S.X. // Laser Particle Beams. 2022. V. 2022. P. 2355629. https://doi.org/10.1155/2022/2355629
- Ribeyre X., Capdessus R., Wheeler J., d’Humières E., Mourou G. // Sci. Reps. 2022. V. 12. P. 4665. https://doi.org/10.1038/s41598-022-08433-4
- Belyaev V.S., Vinogradov V.I., Matafonov A.P., Rybakov S.M., Krainov V.P., Lisitsa V.S., Andrianov V.P., Ignatiev G.N., Bushuev V.S., Gromov A.I., Rusetsky A.S., Dravin V.A. // Phys. Atomic Nuclei. 2009. V. 72. P. 1077. https://doi.org/10.1134/S1063778809070011
- Gus’kov S.Yu., Korneev F.A. // JETP Lett. 2016. V. 104. P. 1. https://doi.org/10.1134/S0021364016130117
- Andreev S.N., Matafonov A.P., Tarakanov V.P., Belyaev V.S., Kedrov A.Yu., Krainov V.P., Mukhanov S.A., Lobanov A.V. // Phys. Atomic Nuclei. 2023. V. 86. P. 406. https://doi.org/10.1134/S1063778823040038
- Dubinov A.E., Kornilova I.Yu., Selemir V.D. // Uspekhi Fizicheskikh Nauk. 2002. V. 172. P. 1225. https://doi.org/10.3367/UFNr.0172.200211a.1225
- Macchi A., Borghesi M., Passoni M. // Rev. Mod. Phys. 2013. V. 85. P. 751. https://doi.org/10.1103/RevModPhys.85.751
- Bychenkov V.Yu., Brantov A.V., Govras E.A., Kovalev V.F. // Uspekhi Fizicheskikh Nauk. 2015. V. 185. P. 77. https://doi.org/10.3367/UFNr.0185.201501f.0077
- Magee R.M., Ogawa K., Tajima T., Allfrey I., Gota H., McCarroll P., Ohdachi S., Isobe M., Kamio S., Klumper V. et al. // Nature Commun. 2023. V. 14. P. 955. https://doi.org/10.1038/s41467-023-36655-1
- Rostoker N., Binderbauer M.W., Monkhorst H.J. // Science. 1997. V. 278. P. 1419. https://doi.org/10.1126/science.278.5342.1419
- Volosov V.I. // Nuclear Fusion. 2006. V. 46. P. 820. https://doi.org/10.1088/0029-5515/46/8/007
- Nevins W.M. // Science. 1998. V. 281. P. 307. https://doi.org/10.1126/science.281.5375.307a
- Moustaizis S., Daponta C., Eliezer S., Henis Z., Lalousis P., Nissim N., Schweitzer Y. // J. Instrumentation. 2024. V. 19. P. C01015. https://doi.org/10.1088/1748-0221/19/01/C01015
- Bone T., Sedwick R. // Acta Astronautica. 2024. V. 220. P. 356. https://doi.org/10.1016/j.actaastro.2024.04.040
- Liu M., Xie H., Wang Y., Dong J., Feng K., Gu X., Huang X., Jiang X., Li Y., Li Z. et al. // Phys. Plasmas. 2024. V. 31. P. 062507. https://doi.org/10.1063/5.0199112
- Rider T.H. // Phys. Plasmas. 1995. V. 2. P. 1853. https://doi.org/10.1063/1.871273
- Kurilenkov Yu.K., Oginov A.V., Tarakanov V.P., Gus’kov S.Yu., Samoylov I.S. // Phys. Rev. E. 2021. V. 103. P. 043208. https://doi.org/10.1103/PhysRevE.103.043208
- Kurilenkov Yu.K., Tarakanov V.P., Oginov A.V., Gus’kov S.Yu., Samoylov I.S. // Laser Particle Beams. 2023. V. 2023. P. 9563197. https://doi.org/10.1155/2023/9563197
- Wong A.Y., Shih C.C. // Plasma. 2022. V. 5. P. 176. https://doi.org/10.3390/plasma5010013
- Hurricane O.A., Callahan D.A., Casey D.T., Celliers P.M., Cerjan C., Dewald E.L., Dittrich T.R., Döppner T., Hinkel D.E., Hopkins L.F.B. et al. // Nature. 2014. V. 506. P. 343. https://doi.org/10.1038/nature13008
- Yager-Elorriaga D.A., Gomez M.R., Ruiz D.E., Slutz S.A., Harvey-Thompson A.J., Jennings C.A., Knapp P.F., Schmit P.F., Weis M.R., Awe T.J. et al. // Nuclear Fusion. 2022. V. 62. P. 042015. https://doi.org/10.1088/1741-4326/ac2dbe
- Гаранин С.Ф. Физические процессы в системах МАГО-MTF. Саров: РФЯЦ-ВНИИЭФ, 2012.
- Ghorbanpour E., Belloni F. // Front. Phys. 2024. V. 12. P. 1405435. https://doi.org/10.3389/fphy.2024.1405435
- Ghorbanpour E., Ghasemizad A., Khoshbinfar S. // Phys. Particles Nuclei Lett. 2020. V. 17. P. 809. https://doi.org/10.1134/S1547477120060126
- Mahdavi M., Bakhtiyari M., Najafi A. // Internat. J. Mod. Phys. B. 2023. V. 37. P. 2350142. https://doi.org/10.1142/S0217979223501424
- Khademloo E., Mahdavi M., Azadboni F.K. // Indian J. Phys. 2024. V. 98. P. 4543. https://doi.org/10.1007/s12648-024-03193-5
- Auluck S., Kubes P., Paduch М., Sadowski M.J., Krauz V.I., Lee S., Soto L., Scholz M., Miklaszewski R., Schmidt H. et al. // Plasma. 2021. V. 4. P. 450. https://doi.org/10.3390/plasma4030033
- Haruki T., Yousefi H.R., Sakai J.I. // Phys. Plasmas. 2010. V. 17. P. 032504. https://doi.org/10.1063/1.3318470
- Abolhasani S., Habibi M., Amrollahi R. // J. Fusion. Energ. 2013. V. 32. P. 189. https://doi.org/10.1007/s10894-012-9547-z
- Di Vita A. // European Phys. J. 2013. V. 67. P. 191. https://doi.org/10.1140/epjd/e2013-40096-3
- Scholz M., Kro´ K., Kulin A., Karpin L., Wo´jcikGargula A., Fitta M. // J. Fusion Energy. 2019. V. 38. P. 522. https://doi.org/0.1007/s10894-019-00225-5
- Lerner E.J., Hassan S.M., KaramitsosZivkovic I., Fritsch R. // J. Fusion Energy. 2023. V. 42. P. 7. https://doi.org/10.1007/s10894-023-00348-w; Correction // J. Fusion Energy. 2023. V. 42. P. 9. https://doi.org/10.1007/s10894-023-00348-w
- Vikhrev V.V., Korolev V.D. // Plasma Phys. Rep. 2007. V. 33. P. 356. https://doi.org/10.1134/S1063780X07050029
- Akel M., AL-Hawat S., Ahmad M., Ballul Y., Shaaban S. // Plasma. 2022. V. 5. P. 184. https://doi.org/10.3390/plasma5020014
- Shumlak U. // J. Appl. Phys. 2020. V. 127. P. 200901. https://doi.org/10.1063/5.0004228
- Shumlak U., Meier E.T., Levitt B.J. // Fusion Sci. Technol. 2024. V. 80. P. 1. https://doi.org/10.1080/15361055.2023.2198049
- Pikuz S.A., Sinars D.B., Shelkovenko T.A., Chandler K.M., Hammer D.A., Ivanenkov G.V., Stepniewski W., Skobelev I.Yu. // Phys. Rev. Lett. 2024. V. 89. P. 035003. https://doi.org/10.1103/PhysRevLett.89.035003
- Kroupp E., Stambulchik E., Starobinets A., Osin D., Fisher V.I., Alumot D., Maron Y., Davidovits S., Fisch N.J., Fruchtman A. // Phys. Rev. E. 2018. V. 97. P. 013202. https://doi.org/10.1103/PhysRevE.97.013202
- Davidovits S., Kroupp E., Stambulchik E., Maron Y. // Phys. Rev. E. 2021. V. 103. P. 063204. https://doi.org/10.1103/PhysRevE.103.063204
- Vikhrev V.V., Frolov A.Yu., Chirkov A.Yu. // J. Physics: Confer. Ser. 2019. V. 1370. P. 012026. https://doi.org/10.1088/1742-6596/1370/1/012026
- Chirkov A.Yu., Tokarev S.A. // Fusion Sci. Technology. 2023. V. 79. P. 413. https://doi.org/10.1080/15361055.2022. 2135337
- Son S., Fisch N.J. // Phys. Lett. A. 2004. V. 329. P. 76. https://doi.org/10.1016/j.physleta.2004.06.054
- Hosseini Motlagh S.N., Mohamadi Sh.S., Shamsi R. // J. Fusion Energy. 2008. V. 27. P. 161. https://doi.org/10.1007/s10894-007-9124-z
- Eliezer S., León P.T., Martinez-Val J.M., Fisher D.V. // Laser Particle Beams. 2003. V. 21. P. 599. https://doi.org/10.10170S0263034603214191
- Dzhavakhishvili D.I., Tsintsadze N.L. // Sov. Phys.– JETP. 1973. V. 37. P. 666. https://doi.org/10.1088/1741-4326/acee96
- Lavrinenko Y.S., Morozov I.V., Valuev I.A. // Contrib. Plasma Phys. 2024. V. 64. P. e202300158. https://doi.org/10.1002/ctpp.202300158
- Svensson R. // Astrophys. J. 1982. V. 258. P. 335. https://doi.org/10.1086/160082
- Li Z. // Phys. Plasmas. 2024. V. 31. P. 084701. https://doi.org/10.1063/5.0223575
- Basko M.M. // Nucl. Fusion. 1990. V. 30. P. 2443. https://doi.org/10.1088/0029-5515/30/12/001
- Zel’dovich Ya.B., Raizer Yu.P. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic Press, New York–London, 1966).
- Moseev D., Salewski M. // Phys. Plasmas. 2019. V. 26. P. 020901. https://doi.org/10.1063/1.5085429
- Xie H., Tan M., Luo D., Li Z., Bing L. // Plasma Phys. Control. Fusion. 2023. V. 65. P. 055019. https://doi.org/10.1088/1361-6587/acc8f9
- Kong H., Xie H., Bing L., Tan M., Luo D., Li Z., Sun J. // Plasma Phys. Control. Fusion. 2024. V. 66. P. 015009. https://doi.org/10.1088/1361-6587/ad1008
- Binderbauer M.W., Rostoker N. // J. Plasma Phys. 1996. V. 56. P. 451. https://doi.org/10.1017/S0022377800019413
- Tchórz P., Chodukowski T., Rosiński M., Borodziuk S., Szymański M., Dudžák R., Singh S., Krupka M., Burian T., Marchenko A. et al. // Phys. Plasmas. 2024. V. 31. P. 084503. https://doi.org/10.1063/5.0207108
- Putvinskii S.V. // Reviews of Plasma Physics. V. 18 / Ed. B. B. Kadomtsev. 1993. P. 239.
- Zhang D., Wang X., Dong C., Bao J., Cao J., Zhang W., Li D. // Phys. Plasmas. 2024. V. 31. P. 042509. https://doi.org/10.1063/5.0197259
- Baldwin D.E., Byers J.A., Chen Y.J., Kaiser T.B. // IAEA Internat. Confer. on Plasma Phys. Controlled Nuclear Fusion Research. Kyoto. Japan. 12 November 1986. IAEA. Vienna. Austria. 1986. P. 293.
- Shabrov N.V., Khvesjuk V.I. // Fusion Technology. 1994. V. 26. P. 117. https://doi.org/10.13182/FST94-A30335
- Khvesyuk V.I., Shabrov N.V., Lyakhov A.N. // Fusion Technol. 1995. V. 27. P. 406. https://doi.org/10.13182/FST95-A11947116
- Gudinetsky E., Miller T., Be’ery I., Barth I. // arXiv.2402.18687. 2024. https://doi.org/10.48550/arXiv.2402.18687
- Barth I., Friedland L., Sarid E., Shagalov A.G. // Phys. Rev. Lett. 2009. V. 103. P. 155001. https://doi.org/10.1103/PhysRevLett.103.155001
- Munirov V.R., Fisch N.J. // Phys. Rev. E. 2023. V. 107. P. 065205. https://doi.org/10.1103/PhysRevE.107.065205
- Ochs I.E., Mlodik M.E., Fisch N.J. // Phys. Plasmas. 2024. V. 31. P. 083303. https://doi.org/10.1063/5.0228464
Arquivos suplementares
