Effect of interface quality on photoluminescence of encapsulated MoSe2 monolayers

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Photoluminescence spectra of excitons and trions in MoSe2 monolayers encapsulated with hexagonal boron nitride under nonresonant laser excitation were studied. When the size of the laser excitation spot decreases from 8 to 3 nm, individual peaks with a line width of ~2 meV emerge in the photoluminescence spectra, which were unresolved with a larger spot. Studies of the sample surface using a scanning electron microscope revealed the existence of a large number of features at the interfaces of structures with characteristic sizes ranging from submicron to micron and more. It was expected that the lines appearing in the spectrum at small excitation spot sizes were associated with similar submicron inhomogeneities. A study of a specially made heterostructure covered by a metal mask with holes of 1.6 microns in diameter confirmed this assumption.

Sobre autores

A. Chernenko

Institute of Solid State Physics of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: chernen@issp.ac.ru
Russia, 142432, Chernogolovka

A. Brichkin

Institute of Solid State Physics of the Russian Academy of Sciences

Email: chernen@issp.ac.ru
Russia, 142432, Chernogolovka

G. Golyshkov

Institute of Solid State Physics of the Russian Academy of Sciences

Email: chernen@issp.ac.ru
Russia, 142432, Chernogolovka

A. Shevchun

Institute of Solid State Physics of the Russian Academy of Sciences

Email: chernen@issp.ac.ru
Russia, 142432, Chernogolovka

Bibliografia

  1. Ivchenko E.L. Optical spectroscopy of semiconductor nanostructures. Harrow: Alpha Science International Ltd, 2005. 350 p.
  2. Kolobov A.V., Tominaga J. Two-dimensional transition-metal dichalcogenides. SSMaterials. V. 239. Berlin: Springer, 2016.
  3. Khestanova E., Guinea F., Fumagalli L. et al. // Nature Commun. 2016. V. 7. Art. No. 12587.
  4. Geim A.K., Grigorieva I.V. // Nature. 2013. V. 499. P. 419.
  5. Черненко А.В., Бричкин А.С. // Изв. РАН. Сер. физ. 2021. Т. 85. № 2. С. 245.
  6. Tyrnina A.V., Bandurin D.A., Khestanova E. et al. // ACS Photonics. 2019. V. 6. No. 2. P. 516.
  7. Schneider L., Esdaille S., Rhodes D. et al. // Opt. Express. 2019. V. 27. No. 26. Art. No. 37131.
  8. Dufferwiel S., Schwarz S., Withers F. et al. // Nature Commun. 2015. V. 6. Art. No. 8579.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (365KB)
3.

Baixar (59KB)
4.

Baixar (45KB)
5.

Baixar (386KB)
6.

Baixar (396KB)
7.

Baixar (256KB)
8.

Baixar (68KB)

Declaração de direitos autorais © А.В. Черненко, А.С. Бричкин, Г.М. Голышков, А.Ф. Шевчун, 2023