Study of electrochemical etching surface of ultrafine-grained nickel using scanning tunneling microscopy

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

An approach that allows a qualitative and quantitative analysis of the grain structure of ultrafine grained nickel by electrochemical etching surface is proposed. The data on the etching relief of ultrafine grained nickel obtained by scanning tunneling microscopy have been analyzed. The bimodality of the structure was revealed, which was confirmed by statistical analysis.

Sobre autores

N. Chikunova

Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: chikunova@imp.uran.ru
Russia, 620137, Yekaterinburg

A. Stolbovsky

Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences

Email: chikunova@imp.uran.ru
Russia, 620137, Yekaterinburg

S. Murzinova

Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences

Email: chikunova@imp.uran.ru
Russia, 620137, Yekaterinburg

R. Falahutdinov

Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences

Email: chikunova@imp.uran.ru
Russia, 620137, Yekaterinburg

I. Blinov

Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences

Email: chikunova@imp.uran.ru
Russia, 620137, Yekaterinburg

Bibliografia

  1. Valiev R.Z., Islamgaliev R.K., Alexandrov I.V. // Prog. Mater. Sci. 2000. V. 45. No. 2. P. 103.
  2. Langdon T.G. // Acta Mater. 2013. V. 61. No. 19. P. 7035.
  3. Estrin Y., Vinogradov A. // Acta Mater. 2013. V. 61. No. 3. P. 782.
  4. Sauvage X., Wilde G., Divinski S.V. et al. // Mater. Sci. Eng. A. 2012. V. 540. P. 1.
  5. Divinski S.V. // Diff. Found. 2015. V. 5. P. 57.
  6. Wilde G., Divinski S. // Mater. Trans. 2019. V. 60. No. 7. P. 1302.
  7. Watanabe T. // Res. Mech. 1984. V. 11. No. 1. P. 47.
  8. Watanabe T., Tsurekawa S. // Acta Mater. 1999. V. 47. No. 15. P. 4171.
  9. Emeis F., Peterlechner M., Divinski S.V., Wilde G. // Acta Mater. 2018. V. 150. P. 262.
  10. Detor A.J., Schuh C.A. // J. Mater. Res. 2007. V. 22. No. 11. P. 3233.
  11. Gertsman V. Yu., Birringer R. // Scripta Metall. Mater. 1994. V. 30. No. 5. P. 577.
  12. Popov V.V., Stolbovsky A.V., Popova E.N., Pilyugin V.P. // Def. Diff. Forum. 2010. V. 297–301. P. 1312.
  13. Воронова Л.М., Дегтярев М.В., Чащухина Т.И. // ФММ. 2021. Т. 122. № 6. С. 600; Voronova L.M., Degtyarev M.V., Chashchukhina T.I. // Phys. Met. Metallogr. 2021. V. 122. No. 6. P. 559.
  14. Stolbovsky A. // Mater. Today. Proc. 2021. V. 38. No. 4. P. 1817.
  15. Liu X., Choi D., Beladi H. et al. // Scr. Mater. 2013. V. 69. No. 5. P. 413.
  16. Rohrer G.S., Saylor D.M., El-Dasher B. et al. // Zeitschrift Fur Met. 2004. V. 95. No. 4. P. 197.
  17. Amouyal Y., Rabkin E. // Acta Mater. 2007. V. 55. No. 20. P. 6681.
  18. Zimmerman J., Sharma A., Divinski S.V., Rabkin E. // Scr. Mater. 2020. V. 182. P. 90.
  19. Saylor D., Rohrer G. // J. Amer. Ceram. Soc. 1999. V. 82. No. 6. P. 1529.
  20. Кузнецов П.В., Рахматулина Т.В., Беляева И.В., Корзников А.В. // ФММ. 2017. Т. 118. No. 3. С. 255; Kuznetsov P.V., Rakhmatulina T.V., Belyaeva I.V., Korznikov A.V. // Phys. Met. Metallogr. 2017. V. 118. No. 3. P. 241.
  21. Соловьева Ю.В., Старенченко С.В., Старенченко В.А. и др. // Изв. РАН. Сер. физ. 2021. Т. 85. № 9. С. 1229; Solov’eva Yu.V., Starenchenko S.V., Starenchenko V.A. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 9. P. 941.
  22. Кодиров И.С., Рааб Г.И., Алешин Г.Н. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 5. С. 619; Kodirov I.S., Raab G.I., Aleshin G.N. et al. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 5. P. 508.
  23. Соловьев А.Н., Старенченко С.В., Соловьева Ю.В., Старенченко В.А. // Изв. РАН. Сер. физ. 2019. Т. 83. № 6. С. 806; Solov’ev A.N., Starenchenko S.V., Solov’eva Yu.V., Starenchenko V.A. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 6. P. 733.
  24. Шурыгина Н.А., Черетаева А.О., Глезер А.М. и др. // Изв. РАН. Сер. физ. 2018. Т. 82. № 9. С. 1226; Shurygina N.A., Cheretaeva A.O., Glezer A.M. et al. // Bull. Russ. Acad. Sci. Phys. 2018. V. 82. No. 9. P. 1113.
  25. Stolbovsky A. // IOP Conf. Ser. Mater. Sci. Eng. 2020. V. 969. No. 1. Art. No. 012084.
  26. Ronneberger O., Fischer P., Brox T. // Lect. Notes Comput. Sci. 2015. V. 9351. P. 234.
  27. Meyer F. // 1992 Int. Conf. Image Proc. Appl. 1992. V. 354. P. 303.
  28. Dempster A.P., Laird N.M., Rubin D.B. // J. Royal Stat. Soc. B. 1977. V. 39. No. 1. P. 1.
  29. Bock D., Velleman P., De Veaux R., Bullard F. Stats: Modeling the World. 5th ed. Pearson, 2019. 864 p.
  30. Voronova L.M., Degtyarev M.V., Chashchukhina T.I. et al. // Mater. Sci. Eng. A. 2015. V. 639. P. 155.
  31. Woods J.W. Multidimensional signal, image, and video processing and coding. 2nd ed. Elsevier Inc., 2011. 616 p.
  32. Walton W. // Nature. 1948. V. 162. P. 329.
  33. Glezer A.M., Tomchuk A.A., Sundeev R.V., Gorshenkov M.V. // Mater. Lett. 2015. V. 161. P. 360.
  34. McLachlan G., Peel D. Finite mixture models. John Wiley & Sons Inc., 2000. 456 p.
  35. Осинников Е.В., Мурзинова С.А., Истомина А.Ю. и др. // ФММ. 2021. Т. 122. № 10. С. 1049; Osinnikov E.V., Murzinova S.A., Istomina A.Yu. et al. // Phys. Met. Metallogr. 2021. V. 122. No. 10. P. 976.
  36. Попов В.В., Попова Е.Н., Кузнецов Д.Д. и др. // ФММ. 2014. Т. 115. № 7. С. 727; Popov V.V., Popova E.N., Kuznetsov D.D. et al. // Phys. Met. Metallogr. 2014. V. 115. No. 7. P. 682.
  37. Guo X.K., Dong H.L., Luo Z.P. et al. // Scr. Mater. 2022. V. 214. Art. No. 114656.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (1MB)
3.

Baixar (89KB)
4.

Baixar (148KB)

Declaração de direitos autorais © Н.С. Чикунова, А.В. Столбовский, С.А. Мурзинова, Р.М. Фалахутдинов, И.В. Блинов, 2023