Radio-frequency ion thruster with magnetic shielding of the discharge chamber walls

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We presented the results of a computational study on optimizing the shape of the main elements of a radio-frequency ion thruster – the discharge chamber and the ion-extraction system grids. The possibility of improving the integral characteristics of thrusters and ion sources due to the use of an additional magnetostatic field in the RF discharge region was considered. The performed series of calculations made it possible to determine the optimal geometry of the discharge chamber and of the RIT ion-extraction system grids, as well as the configuration of the additional magnetic field, at which the best values of the integral characteristics were achieved.

Sobre autores

V. Abgaryan

Moscow Aviation Institute (National Research University)

Email: melnikov.andrey.sp@yandex.ru

Research Institute of Applied Mechanics and Electrodynamics

Rússia, Moscow, 125080

D. Demchenko

Moscow Aviation Institute (National Research University)

Email: melnikov.andrey.sp@yandex.ru

Research Institute of Applied Mechanics and Electrodynamics

Rússia, Moscow, 125080

A. Melnikov

Moscow Aviation Institute (National Research University)

Autor responsável pela correspondência
Email: melnikov.andrey.sp@yandex.ru

Научно-исследовательский институт прикладной механики и электродинамики

Rússia, Moscow, 125080

O. Peisakhovich

Moscow Aviation Institute (National Research University)

Email: melnikov.andrey.sp@yandex.ru

Research Institute of Applied Mechanics and Electrodynamics

Rússia, Moscow, 125080

Bibliografia

  1. http://archive.satcomrus.ru/2022/presentations/5_%20%D0%A3%D1%80%D0%BB%D0%B8%D1%87%D0%B8%D1%87_27102022.pdf.
  2. Важенин Н.А., Обухов В.А., Плохих А.П., Попов Г.А. Электрические ракетные двигатели космических аппаратов и их влияние на радиосистемы космической связи. М: Физматлит, 2013. 432 с.
  3. Горшков О.А., Муравлев В.А., Шагайда А.А. Холловские и ионные плазменные двигатели для космических аппаратов. М.: Машиностроение, 2008. 278 с.
  4. Антропов Н.Н., Ахметжанов Р.В., Богатый А.В. и др. // Изв. РАН. Энергетика. 2016. № 2. С. 4.
  5. Abgaryan V.K., Kruglov K.I., Mogulkin A.I. et al. // J. Surface Inv. 2017. V. 11. No. 6. P. 1239.
  6. Abgaryan V.K., Riaby V.A., Yamashev G.G. // J. Surface Inv. 2017. V. 11. No. 5. P. 1008.
  7. Kanev S., Melnikov A., Nazarenko I., Khartov S. // IOP Conf. Ser. Mater. Sci. Eng. 2020. V. 868. Art. No. 012010.
  8. Leiter H.J., Loeb H.W., Schartner K.H. // Proc. 3rd Int. Conf. Spacecraft Propulsion (Cannes, 2000). P. 423.
  9. Walther R., Geisel J., Pinks W. et al. // Proc. 11th Elect. Propulsion Conf. (New Orleans, 1975). Art. No. AIAA-75–367.
  10. Tsay M.M.T. Two-dimensional numerical modeling of radio-frequency ion engine discharge. PhD thesis. Massachusetts Institute of Technology, 2010.
  11. Абгарян В.К., Мельников А.В., Купреева А.Ю., Пейсахович О.Д. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2023. № 5. C. 103.
  12. Melnikov A.V., Khartov S.A. // Thermal Eng. 2018. V. 65. No. 13. P. 980.
  13. Кожевников В.В., Мельников А.В., Назаренко И.П., Хартов С.А. // Изв. РАН. Энергетика. 2019. № 3. С. 40.
  14. Арцимович Л.А. Управляемые термоядерные реакции. М.: Физматлит, 1961. 467 с.
  15. https://www.comsol.com.
  16. Григорьян В.Г., Демидов А.С., Хартов С.А. Расчет и конструкция электроракетных двигателей: Уч. пособие. М.: Изд-во МАИ-ПРИНТ, 2011. 88 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024