Modeling the UT effect of zonal-averaged perturbations in the parameters of the upper atmosphere for the example of a geomagnetic storm in march 2015

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Using the Global Self-Consistent Model of the Thermosphere, Ionosphere, and Protonosphere (GSM TIP), we previously gave an interpretation of the ionospheric effects of the March 2015 geomagnetic storm, identified and analyzed the positive aftereffects. Further analysis of the numerical simulation results showed that the positive aftereffects manifest themselves differently in different longitudinal sectors. This paper presents the results of studying the dependence of disturbances in the parameters of the upper atmosphere on the time of the onset of a geomagnetic storm in UT. For this, additional calculations of geomagnetic storms were carried out, identical to the considered storm in March 2015, which began on March 17 at 12 UT, with a start time of the geomagnetic storm shifted by 00, 06, and 18 UT. It is shown that for the family of storms under consideration, the effects of the thermosphere wind are significant in the formation of NmF2 disturbances in the main phase of the storm. The mechanism for the formation of ionospheric aftereffects in the form of positive NmF2 disturbances are n(O)/n(N2) disturbances at heights F of the ionospheric region.

Texto integral

Acesso é fechado

Sobre autores

K. Belyuchenko

Institute of Solar-Terrestrial Physics of the Siberian Branch of the Russian Academy of Sciences; Kaliningrad Branch of Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: kdei@list.ru
Rússia, Irkutsk; Kaliningrad

M. Klimenko

Institute of Solar-Terrestrial Physics of the Siberian Branch of the Russian Academy of Sciences; Kaliningrad Branch of Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences

Email: kdei@list.ru
Rússia, Irkutsk; Kaliningrad

V. Klimenko

Kaliningrad Branch of Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences

Email: kdei@list.ru
Rússia, Kaliningrad

K. Ratovsky

Institute of Solar-Terrestrial Physics of the Siberian Branch of the Russian Academy of Sciences

Email: kdei@list.ru
Rússia, Irkutsk

Bibliografia

  1. Mayr H.G., Harris I., Spencer N.W. // Rev. Geophys. 1978. V. 16. No. 4. P. 539.
  2. Buonsanto M.J. // Space Sci. Rev. 1999. V. 88. No. 3-4. P. 563.
  3. Immel T.J., Mannucci A.J. // J. Geophys. Res. Space Phys. 2013. V. 118. No. 12. P. 7928.
  4. Ratovsky K.G., Klimenko M.V., Yasyukevich Y.V. et al. // Atmosphere. 2020. V. 11. No. 12. P. 1308.
  5. Klimenko M.V., Klimenko V.V., Despirak I.V. et al. // J. Atmos. Solar-Terr. Phys. 2018. V. 180. P. 78.
  6. Ратовский К.Г., Клименко М.В., Клименко В.В. и др. // Солн.-земн. физ. 2018. Т. 4. № 4. P. 32; Ratovsky K.G., Klimenko M.V., Klimenko V.V. et al. // Solar-Terr. Phys. 2018. V. 4. No. 4. P. 26.
  7. Borries C., Berdermann J., Jakowski N., Wilken V. // J. Geophys. Res. Space Phys. 2015. V. 120. No. 4. P. 3175.
  8. Greer K.R., Immel T., Ridley A. // J. Geophys. Res. Space Phys. 2017. V. 122. No. 4. P. 4512.
  9. Liu W., Xu L., Xiong C., Xu J. // Adv. Space Res. 2017. V. 59. No. 2. P. 603.
  10. Шпынев Б.Г., Золотухина Н.А., Полех Н.М. и др. // Совр. пробл. дист. зонд. Земли из космоса. 2017. Т. 14. №. 4. С. 235.
  11. Chang L.C., Liu J.Y., Palo S.E. // J. Geophys. Res. Space Phys. 2011. V. 116. Art. No. A10.
  12. Dmitriev A.V., Suvorova A.V., Klimenko M.V. et al. // J. Geophys. Res. Space Phys. 2017. V. 122. No. 2. P. 2398.
  13. Klimenko M.V., Zakharenkova I.E., Klimenko V.V. et al. // Space Weather. 2019. V. 17. No. 7. P. 1073.
  14. Белюченко К.В., Клименко М.В., Клименко В.В., Ратовский К.Г. // Солн.-земн. физ. 2022. Т. 8. № 3. С. 41; Belyuchenko K.V., Klimenko M.V., Klimenko V.V., Ratovsky K.G. // Solar-Terr. Phys. 2022. V. 8. No. 3. P. 38.
  15. Vorobjev V.G., Yagodkina O.I. // JASTP. 2008. V. 70. No. 2—4. P. 654.
  16. Feshchenko E.Yu., Maltsev Yu.P. // Proc. XXVI Ann. Sem. “Physics of Auroral Phenomena” (Apatity, 2003). P. 59.
  17. Sojka J.J., Schunk R.W., Denig W.F. // J. Geophys. Res. Space Phys. 1994. V. 99. No. A11. P. 21341.
  18. Prölss G.W. // Rev. Geophys. 1980. V. 18. No. 1. P. 183.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Variations of the geomagnetic activity indices AE and AL for the time-shifted moments of storm onset, from top to bottom for 00 UT, 06 UT, 12 UT, 18 UT, respectively

Baixar (375KB)
3. Fig. 2. Latitude-time maps of zonal-averaged NmF2 disturbances for storms with onset times 00, 06, 12, 18 UT. White lines highlight the main phase of the storm

Baixar (520KB)
4. Fig. 3. Same as in Fig. 2 for perturbations Tn

Baixar (477KB)
5. Fig. 4. Same as in Fig. 2 for VnΘ perturbations (the positive direction is chosen towards the equator)

Baixar (617KB)
6. Fig. 5. Same as in Fig. 2 for perturbations n(O)/n(N2)

Baixar (527KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024