Regularities and mechanisms of composition influence on magnetic and nonlinear electrical characteristics of La-Sr manganites with combined substitution for manganese

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The data are shown on magnetic properties and peculiarities of current-voltage characteristics of manganites with substitution of (Fe3+0.5Sc3+0.5), (Ni2+0.5Ge4+0.5), (Zn2+0.5Ge4+0.5), (Mg2+0.5Ge4+0.5) ions pairs for manganese in La-Sr system. The samples containing (Fe, Sc), (Ni, Ge) and (Zn, Ge) have S-shaped sections of negative differential resistance, and (Mg, Ge)-substituted manganite exhibits the property of voltage stabilization.

Texto integral

Acesso é fechado

Sobre autores

V. Karpasyuk

Astrakhan State University

Email: derzh_igor@mail.ru
Rússia, Astrakhan

A. Badelin

Astrakhan State University

Email: derzh_igor@mail.ru
Rússia, Astrakhan

I. Derzhavin

Astrakhan State University

Autor responsável pela correspondência
Email: derzh_igor@mail.ru
Rússia, Astrakhan

S. Estemirova

Astrakhan State University; Institute for Metallurgy of the Ural Branch of the Russian Academy of Sciences

Email: derzh_igor@mail.ru
Rússia, Astrakhan; Yekaterinburg

D. Merkulov

Astrakhan State University

Email: derzh_igor@mail.ru
Rússia, Astrakhan

Bibliografia

  1. Abdel-Latif I.A. // J. Physics. 2012. V. 1. No. 3. P. 15.
  2. Бебенин Н.Г., Зайнуллина Р.И., Устинов В.В. // УФН. 2018. Т. 188. № 8. С. 801; Bebenin N.G., Zainullina R.I., Ustinov V.V. // Phys. Usp. 2018. V. 61. No. 8. P. 719.
  3. Россоленко А.Н., Тулина Н.А., Шмытько И.М. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 4. С. 541; Rossolenko A.N., Tulina N.A., Shmytko I.M. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 4. P. 468.
  4. Pergament A., Stefanovich G., Malinenko V., Velichko A. // Adv. Cond. Matter Phys. 2015. V. 15. Art. No. 654840.
  5. Guha A., Khare N., Raychaudhuri A.K., Rao C.N.R. // Phys. Rev. B. 2000. V. 62. Art. No. R11941(R).
  6. Камилов И.К., Алиев К.М., Ибрагимов X.О., Абакарова Я.С. // Письма в ЖЭТФ. 2003. Т. 78. № 8. С. 957; Kamilov I.K., Aliev K.M., Ibragimov Kh.O., Abakarova N.S. // JETP Lett. 2003. V. 78. No. 8. P. 485.
  7. Karpasyuk V.K., Badelin A.G., Smirnov A.M. et al. // J. Phys. Conf. Ser. 2010. V. 200. Art. No. 052026.
  8. Belogolovskii M.A. // Cent. Eur. J. Phys. 2009. V. 7. No. 2. P. 304.
  9. Bagdzevicius S., Maas K., Boudard M., Burriel M. // J. Electroceram. 2017. V. 39. P. 157.
  10. Сизов В.Е., Шайхулов Т.А. // Изв. РАН. Сер. физ. 2023. Т. 87. № 10. С. 1507; Sizov V.E., Shaikhulov T.A. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 10. P. 1540.
  11. Баделин А.Г., Державин И.М., Карпасюк В.К., Эстемирова С.Х. // Изв. РАН. Сер. физ. 2023. T. 87. № 3. C. 396; Badelin A.G., Derzhavin I.M., Karpasyuk V.K., Estemirova S. Kh. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. P. 343.
  12. Волков Д.В., Назаренко А.В., Шилкина Л.А., Вербенко И.А. // Изв. РАН. Сер. физ. 2023. Т. 87. № 9. С. 1248; Volkov D.V., Nazarenko A.V., Shilkina L.A., Verbenko I.A. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 9. P. 1288.
  13. Гамзатов А.Г., Гудин С.А., Арсланов Т.Р. и др. // Письма в ЖЭТФ. 2022. Т. 115. № 3—4 (2). С. 218; Gamzatov A.G., Arslanov T.R., Gudin S.A et al. // JETP Lett. 2022. V. 115. No. 4. P. 190.
  14. Fisher B., Genossar J., Patlagan L., Reisner G.M. // EPJ Web Conf. 2013. V. 40. Art. No. 15009.
  15. Baikalov A., Wang Y.Q., Shen B. et al. // Appl. Phys. Lett. 2003. V. 83. P. 957.
  16. Nian Y.B., Strozier J., Wu N.J. et al. // Phys. Rev. Lett. 2007. V. 98. Art. No. 146403.
  17. D’yachenko O.I., Tarenkov V.Yu., Boliasova O.O., Krivoruchko V.M. // Metallofiz. Noveishie Tekhnol. 2018. V. 40(3). P. 291.
  18. Shaykhutdinov K.A., Popkov S.I., Balaev D.A. et al. // Phys. B. Cond. Matter. 2010. V. 405(24). P. 4961.
  19. Tsendin K. // Phys. Stat. Solidi B. 2009. V. 246. P. 1831.
  20. Babushkina N.A., Belova L.M., Khomskii D.I. et al. // Phys. Rev. B. 1999. V. 59. Art. No. 6994.
  21. Tulina N.A., Uspenskaya L.S., Sirotkin V.V. et al. // Phys. C. 2006. V. 444. P. 19.
  22. Povzner A.A., Volkov A.G. // J. Magn. Magn. Mater. 2017. V. 432. P. 466.
  23. Böttger H., Bryksin V.V. Hopping conduction in solids. Berlin: Akademie Verlag, 1985. 169 p.
  24. Shannon R.D. // Acta Crystallogr. A. 1976. V. 32. P. 751.
  25. Balagurov A.M., Bobrikov I.A., Pomyakushin V. Yu. et al. // JETP Lett. 2005. V. 82. No. 9. P. 594.
  26. Barandiaran J.M., Greneche J.M., Hernandez T. et al. // J. Phys. Cond. Matter. 2002. V. 4. No. 47. P. 12563.
  27. V’yunov O.I., Belous A.G., Tovstolytkin A.I., Yanchevskii O.Z. // J. Eur. Ceram. Soc. 2007. V. 27. No. 13—15. P. 3919.
  28. Pickett W., Singh D. // Europhys. Lett. 1995. V. 32. P. 759.
  29. Karpasyuk V.K., Badelin A.G., Derzhavin I.M. et al. // Int. J. Appl. Eng. Res. 2015. V. 10. No. 21. Art. No. 42746.
  30. Karpasyuk V.K., Badelin A.G., Derzhavin I.M. et al. // J. Magn. Magn. Mater. 2019. V. 476. P. 371.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. SEM micrographs of the surface of manganites containing (Fe, Sc) (a), (Ni, Ge) (b), (ZnGe) (c), (Mg, Ge) (d).

Baixar (634KB)
3. Fig. 2. Temperature dependences of the resistance of (Fe, Sc)-containing manganite (1, 2) and (Ni, Ge)-substituted manganite (3, 4) at different strengths of the measuring electric field: 9.2 V/cm (1, 3); 14.0 V/cm (2, 4).

Baixar (19KB)
4. Fig. 3. CVC of (Fe, Sc)-substituted manganite at different temperatures: 1-130 K; 2-140 K; 3-160 K; 4-180 K; 5-200 K; 6-240 K.

Baixar (21KB)
5. Fig. 4. CVC of manganites containing (Ni, Ge) — 1; (Zn, Ge) — 2, 3; (Mg, Ge) — 4, 5 at different temperatures: 1—260 K; 2—200 K; 3—260 K; 4—200 K; 5—240 K.

Baixar (23KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024