Numerical calculation of electric field enhancement in neutron traps with rough walls coated with superfluid helium
- 作者: Kochev V.D.1, Mogilyuk T.I.2, Kostenko S.S.3, Grigoriev P.D.1,4
-
隶属关系:
- National University of Science and Technology «MISIS»
- National Research Centre «Kurchatov Institute»
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
- L.D. Landau Institute for Theoretical Physics of the Russian Academy of Sciences
- 期: 卷 88, 编号 9 (2024)
- 页面: 1459–1464
- 栏目: Condensed Matter Physics
- URL: https://permmedjournal.ru/0367-6765/article/view/681833
- DOI: https://doi.org/10.31857/S0367676524090185
- EDN: https://elibrary.ru/OCWAOA
- ID: 681833
如何引用文章
详细
A film of liquid helium on the surface of material traps for ultra-cold neutrons protects the neutrons from being absorbed by the trap walls. By using surface roughness and an electrostatic field, it is possible to maintain a helium film of sufficient thickness throughout the height of the trap. Our study includes a numerical calculation of the field distribution near the tip of various forms of such wall roughness of the trap and the discussion how this field helps to hold the helium film.
全文:

作者简介
V. Kochev
National University of Science and Technology «MISIS»
Email: grigorev@itp.ac.ru
俄罗斯联邦, Moscow
T. Mogilyuk
National Research Centre «Kurchatov Institute»
Email: grigorev@itp.ac.ru
俄罗斯联邦, Moscow
S. Kostenko
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
Email: grigorev@itp.ac.ru
俄罗斯联邦, Chernogolovka
P. Grigoriev
National University of Science and Technology «MISIS»; L.D. Landau Institute for Theoretical Physics of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: grigorev@itp.ac.ru
俄罗斯联邦, Moscow; Chernogolovka
参考
- Abele H. // Progr. Part. Nucl. Phys. 2008. V. 60. No. 1. P. 1.
- Ramsey-Musolf M.J., Su S. // Phys. Reports. 2008. V. 456. No. 1. P. 1.
- Dubbers D., Schmidt M.G. // Rev. Mod. Phys. 2011. V. 83. No. 4. P. 1111.
- Wietfeldt F.E., Greene G.L. // Rev. Mod. Phys. 2011. V. 83. No. 4. P. 1173.
- Gonzalez-Alonso M., Naviliat-Cuncic O., Severijns N. // Progr. Part. Nucl. Phys. 2019. V. 104. P. 165.
- Liu J., Mendenhall M.P., Holley A.T. et al. // Phys. Rev. Lett. 2010. V. 105. No. 18. Art. No. 181803.
- Märkisch B., Mest H., Saul H. et al. // Phys. Rev. Lett. 2019. V. 122. No. 24. Art. No. 242501.
- Sun X., Adamek E., Allgeier B. et al. // Phys. Rev. C. 2020. V. 101. No. 3. Art. No. 035503.
- Serebrov A.P., Varlamov V.E., Kharitonov A.G. et al. // Phys. Rev. C. 2008. V. 78. No. 3. Art. No. 035505.
- Arzumanov S., Bondarenko L., Chernyavsky S. et al. // Phys. Lett. B. 2015. V. 745. Art. No. 79.
- Cеребров А.П., Коломенский Е.А., Фомин А.К. и др. // Письма в ЖЭТФ. 2017. Т. 106. № 10. С. 599; Serebrov A.P., Kolomenskiy E.A., Fomin A.K. et al. // JETP Lett. 2017. V. 106. No. 10. P. 623.
- Serebrov A.P., Kolomenskiy E.A., Fomin A.K. et al. // Phys. Rev. C. 2018. V. 97. No. 5. Art. No. 055503.
- Pattie R. ., Callahan N.B., Cude-Woods C. et al. // EPJ Web Conf. 2019. V. 219. Art. No. 03004.
- Huffman P.R., Brome C.R., Butterworth J.S. et al. // Nature. 2000. V. 403. No. 6765. P. 62.
- Leung K.K.H., Geltenbort P., Ivanov S. et al. // Phys. Rev. C. 2016. V. 94. No. 4. Art. No. 045502.
- Steyerl A., Leung K.K.H., Kaufman C. et al. // Phys. Rev. C. 2017. V. 95. No. 3. Art. No. 035502.
- Ezhov V.F., Andreev A.Z., Bazarov B.A. et al. // JETP Lett. 2018. V. 107. No. 11. P. 671.
- Pattie R.W., Callahan N.B., Cude-Woods C. et al. // Science. 2018. V. 360. No. 6389. P. 627.
- Gonzalez F.M., Fries E.M., Cude-Woods C. et al. // Phys. Rev. Lett. 2021. V. 127. No. 16. Art. No. 162501.
- Nico J.S., Dewey M.S., Gilliam D.M. et al. // Phys. Rev. C. 2005. V. 71. No. 5. Art. No. 055502.
- Yue A.T., Dewey M.S., Gilliam D.M. et al. // Phys. Rev. Lett. 2013. V. 111. No. 22. Art. No. 222501.
- Hirota K., Ichikawa G., Ieki S. // Progr. Theor. Exp. Phys. 2020. V. 2020. No. 12. Art. No. 123C02.
- Grigoriev P.D., Dyugaev A.M. // Phys. Rev. C. 2021. V. 104. No. 5. Art. No. 055501.
- Григорьев П.Д., Дюгаев А.М., Могилюк Т.И., Григорьев А.Д. // Письма в ЖЭТФ. 2021. Т. 114. № 8. С. 560; Grigoriev P.D., Dyugaev A.M., Mogilyuk T.I., Grigoriev A.D. // JETP Lett. 2021. V. 114. No. 8. P. 493.
- Grigoriev P.D., Sadovnikov A.V., Kochev V.D., Dyugaev A.M. // Phys. Rev. C. 2023. V. 108. No. 2. Art. No. 025501.
- Golub R., Jewell C., Ageron P. et al. // Z. Phys. B. Cond. Matter. 1983. V. 51. No. 3. P. 187.
- Bokun R.C. // Sov. J. Nucl. Phys. 1984. V. 40. No. 1. P. 287.
- Aлфименков В.П., Игнатович В.К., Межов-Деглин Л.П. и др. // Препринт ОИЯИ. № 3-2009-197. Дубна, 2009.
- Aлексеев И.Е., Белов С.Е., Ершов К.В. // Изв. РАН. Сер. физ. 2022. T. 86. № 9. С. 1315; Alekseev I.E., Belov S.E., Ershov K.V. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 9. P. 1088.
- Григорьев С.В., Коваленко Н.А., Павлов К.А. и др. // Изв. РАН. Сер. физ. 2023. T. 87. № 11. С. 1526; Grigoriev S.V., Kovalenko N.A., Pavlov K.A. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 11. P. 1561.
- Grigoriev P.D., Zimmer O., Grigoriev A.D., Ziman T. // Phys. Rev. C. 2016. V. 94. No. 2. Art. No. 025504.
- Florkowska B., Wlodek R. // IEEE Trans. Electr. Insul. 1993. V. 28. No. 6. P. 932.
- Arndt D., Bangerth W., Davydov D. et al. // J. Comput. Math. Appl. 2021. V. 81. P. 407.
- Geuzaine C., Remacle J.F. // Int. J. Numer. Meth. Eng. 2009. V. 79. No. 11. P. 1309.
- Marchetti S., Rozzi T. // IEEE Trans. Antennas Propag. 1990. V. 38. No. 9. P. 1333.
- Ito T.M., Ramsey J.C., Yao W. et al. // Rev. Sci. Instrum. 2016. V. 87. No. 4. Art. No. 045113.
- Bourgin Y., Jourlin Y., Parriaux O. et al. // Opt. Express. 2010. V. 18. No. 10. P. 10557.
补充文件
