Numerical calculation of electric field enhancement in neutron traps with rough walls coated with superfluid helium

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A film of liquid helium on the surface of material traps for ultra-cold neutrons protects the neutrons from being absorbed by the trap walls. By using surface roughness and an electrostatic field, it is possible to maintain a helium film of sufficient thickness throughout the height of the trap. Our study includes a numerical calculation of the field distribution near the tip of various forms of such wall roughness of the trap and the discussion how this field helps to hold the helium film.

全文:

受限制的访问

作者简介

V. Kochev

National University of Science and Technology «MISIS»

Email: grigorev@itp.ac.ru
俄罗斯联邦, Moscow

T. Mogilyuk

National Research Centre «Kurchatov Institute»

Email: grigorev@itp.ac.ru
俄罗斯联邦, Moscow

S. Kostenko

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: grigorev@itp.ac.ru
俄罗斯联邦, Chernogolovka

P. Grigoriev

National University of Science and Technology «MISIS»; L.D. Landau Institute for Theoretical Physics of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: grigorev@itp.ac.ru
俄罗斯联邦, Moscow; Chernogolovka

参考

  1. Abele H. // Progr. Part. Nucl. Phys. 2008. V. 60. No. 1. P. 1.
  2. Ramsey-Musolf M.J., Su S. // Phys. Reports. 2008. V. 456. No. 1. P. 1.
  3. Dubbers D., Schmidt M.G. // Rev. Mod. Phys. 2011. V. 83. No. 4. P. 1111.
  4. Wietfeldt F.E., Greene G.L. // Rev. Mod. Phys. 2011. V. 83. No. 4. P. 1173.
  5. Gonzalez-Alonso M., Naviliat-Cuncic O., Severijns N. // Progr. Part. Nucl. Phys. 2019. V. 104. P. 165.
  6. Liu J., Mendenhall M.P., Holley A.T. et al. // Phys. Rev. Lett. 2010. V. 105. No. 18. Art. No. 181803.
  7. Märkisch B., Mest H., Saul H. et al. // Phys. Rev. Lett. 2019. V. 122. No. 24. Art. No. 242501.
  8. Sun X., Adamek E., Allgeier B. et al. // Phys. Rev. C. 2020. V. 101. No. 3. Art. No. 035503.
  9. Serebrov A.P., Varlamov V.E., Kharitonov A.G. et al. // Phys. Rev. C. 2008. V. 78. No. 3. Art. No. 035505.
  10. Arzumanov S., Bondarenko L., Chernyavsky S. et al. // Phys. Lett. B. 2015. V. 745. Art. No. 79.
  11. Cеребров А.П., Коломенский Е.А., Фомин А.К. и др. // Письма в ЖЭТФ. 2017. Т. 106. № 10. С. 599; Serebrov A.P., Kolomenskiy E.A., Fomin A.K. et al. // JETP Lett. 2017. V. 106. No. 10. P. 623.
  12. Serebrov A.P., Kolomenskiy E.A., Fomin A.K. et al. // Phys. Rev. C. 2018. V. 97. No. 5. Art. No. 055503.
  13. Pattie R. ., Callahan N.B., Cude-Woods C. et al. // EPJ Web Conf. 2019. V. 219. Art. No. 03004.
  14. Huffman P.R., Brome C.R., Butterworth J.S. et al. // Nature. 2000. V. 403. No. 6765. P. 62.
  15. Leung K.K.H., Geltenbort P., Ivanov S. et al. // Phys. Rev. C. 2016. V. 94. No. 4. Art. No. 045502.
  16. Steyerl A., Leung K.K.H., Kaufman C. et al. // Phys. Rev. C. 2017. V. 95. No. 3. Art. No. 035502.
  17. Ezhov V.F., Andreev A.Z., Bazarov B.A. et al. // JETP Lett. 2018. V. 107. No. 11. P. 671.
  18. Pattie R.W., Callahan N.B., Cude-Woods C. et al. // Science. 2018. V. 360. No. 6389. P. 627.
  19. Gonzalez F.M., Fries E.M., Cude-Woods C. et al. // Phys. Rev. Lett. 2021. V. 127. No. 16. Art. No. 162501.
  20. Nico J.S., Dewey M.S., Gilliam D.M. et al. // Phys. Rev. C. 2005. V. 71. No. 5. Art. No. 055502.
  21. Yue A.T., Dewey M.S., Gilliam D.M. et al. // Phys. Rev. Lett. 2013. V. 111. No. 22. Art. No. 222501.
  22. Hirota K., Ichikawa G., Ieki S. // Progr. Theor. Exp. Phys. 2020. V. 2020. No. 12. Art. No. 123C02.
  23. Grigoriev P.D., Dyugaev A.M. // Phys. Rev. C. 2021. V. 104. No. 5. Art. No. 055501.
  24. Григорьев П.Д., Дюгаев А.М., Могилюк Т.И., Григорьев А.Д. // Письма в ЖЭТФ. 2021. Т. 114. № 8. С. 560; Grigoriev P.D., Dyugaev A.M., Mogilyuk T.I., Grigoriev A.D. // JETP Lett. 2021. V. 114. No. 8. P. 493.
  25. Grigoriev P.D., Sadovnikov A.V., Kochev V.D., Dyugaev A.M. // Phys. Rev. C. 2023. V. 108. No. 2. Art. No. 025501.
  26. Golub R., Jewell C., Ageron P. et al. // Z. Phys. B. Cond. Matter. 1983. V. 51. No. 3. P. 187.
  27. Bokun R.C. // Sov. J. Nucl. Phys. 1984. V. 40. No. 1. P. 287.
  28. Aлфименков В.П., Игнатович В.К., Межов-Деглин Л.П. и др. // Препринт ОИЯИ. № 3-2009-197. Дубна, 2009.
  29. Aлексеев И.Е., Белов С.Е., Ершов К.В. // Изв. РАН. Сер. физ. 2022. T. 86. № 9. С. 1315; Alekseev I.E., Belov S.E., Ershov K.V. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 9. P. 1088.
  30. Григорьев С.В., Коваленко Н.А., Павлов К.А. и др. // Изв. РАН. Сер. физ. 2023. T. 87. № 11. С. 1526; Grigoriev S.V., Kovalenko N.A., Pavlov K.A. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 11. P. 1561.
  31. Grigoriev P.D., Zimmer O., Grigoriev A.D., Ziman T. // Phys. Rev. C. 2016. V. 94. No. 2. Art. No. 025504.
  32. Florkowska B., Wlodek R. // IEEE Trans. Electr. Insul. 1993. V. 28. No. 6. P. 932.
  33. Arndt D., Bangerth W., Davydov D. et al. // J. Comput. Math. Appl. 2021. V. 81. P. 407.
  34. Geuzaine C., Remacle J.F. // Int. J. Numer. Meth. Eng. 2009. V. 79. No. 11. P. 1309.
  35. Marchetti S., Rozzi T. // IEEE Trans. Antennas Propag. 1990. V. 38. No. 9. P. 1333.
  36. Ito T.M., Ramsey J.C., Yao W. et al. // Rev. Sci. Instrum. 2016. V. 87. No. 4. Art. No. 045113.
  37. Bourgin Y., Jourlin Y., Parriaux O. et al. // Opt. Express. 2010. V. 18. No. 10. P. 10557.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Calculation grid of finite elements for pyramids of size 𝑙R = ℎR = 1 μm. Distribution of electric field amplification factor is shown in color.

下载 (40KB)
3. Fig. 2. Electric field amplification near the roughness tip of the trap wall.

下载 (12KB)
4. Fig. 3. Curves from Fig. 2 in double logarithmic scale.

下载 (11KB)

版权所有 © Russian Academy of Sciences, 2024