Deformation of magnetic active elastomers in magnetic field

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Magnetoactive (aka magnetorheological) elastomer is a composite material consisting of an elastic matrix and magnetic filling substance. A study has been given to the magnetic field-induced deformation of the material. Influenced by non-homogeneous fields, samples of the elastomer have been noticed to exhibit elongations by hundreds of percent. When magnetized, the material filled with magnetically hard particles may exhibit field-induced deformation occurring in a complicated way. In a magnetic field, it reversibly gains a degree of roughness resulting in improved hydrophobicity. In addition, the composite increases in rigidity by tens of percent. Such magnetoactive elastomer may be considered a prospective material to find application in robotics and field-controlled damping units.

全文:

受限制的访问

作者简介

G. Stepanov

State Research Institute for Chemistry and Technology of Organoelement Compounds

编辑信件的主要联系方式.
Email: gstepanov@mail.ru
俄罗斯联邦, Moscow

P. Storozhenko

State Research Institute for Chemistry and Technology of Organoelement Compounds

Email: gstepanov@mail.ru
俄罗斯联邦, Moscow

参考

  1. Shiga T., Okada A., Kurauchi T. // J. Appl. Polym. Sci. 1995. V. 58. P. 787.
  2. EP 0784163. 1996. Variable stiffness bushing using magnetorheological elastomers.
  3. Jolly M.R., Carlson J.D., Munoz B.C. // J. Intell. Mater. Syst. Struct. 1996. No. 7. P. 613.
  4. Jolly M.R., Carlson J.D., Munoz B.C. // Smart Mater. Struct. 1996. V. 5. No. 5. P. 607.
  5. Zrínyi M., Barsi L., Büki A. // J. Chem. Phys. 1996. V. 104. No. 21. P. 8750.
  6. Zrı́nyi M., Barsi L., Szabó D., Kilian H.-G. // J. Chem. Phys. 1997. V. 106. No. 13. P. 5685.
  7. Nikitin L.V., Mironova L.S., Stepanov G.V., Samus A.N. // Polymer Sci. A. 2001. V. 43. No. 4. Р. 443.
  8. Nikitin L.V., Stepanov G.V., Mironova L.S., Gorbunov A.I. // JMMM. 2004. V. 272—276. P. 2072.
  9. Алехина Ю.А., Макарова Л.А., Наджарьян Т.А. и др. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 882; Alekhina Y.A., Makarova L.A., Nadzharyan T.A. et al. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 801.
  10. Амиров А.А., Каминский А.С., Архипова Е.А. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 6. С. 813; Amirov A.A., Kaminskiy A.S., Arkhipova E.A. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 6. P. 715.
  11. Кузнецова И.Е., Колесов В.В., Зайцев Б.Д. и др. // Изв. РАН. Сер. физ. 2017. Т. 81. № 8. С. 1048; Kuznetsova I.E., Kolesov V.V., Zaitsev B.D. et al. // Bull. Russ. Acad. Sci. Phys. 2017. V. 81. No. 8. P. 945.
  12. Степанов Г.В., Крамаренко Е.Ю., Перов Н.С. и др. // Вест. Перм. ПНИПУ. Механика. 2013. № 4. С. 106.
  13. Степанов Г.В., Кириченко С.И., Махаева Е.Е., Крамаренко Е.Ю. // ВМС. Сер. А. 2023. Т 65. № 2. С. 104; Stepanov G.V., Kirichenko S.I., Makhaeva E.E. et al. // Polym. Sci. Ser. A. 2023. V. 65. P. 157.
  14. Zimmermann K., Naletova V.A., Zeidis I. et al. // J. Magn. Magn. Mater. 2007. V. 311. No. 1. P. 450.
  15. Stepanov G.V., Chertovich A.V., Kramarenko E.Y. // JMMM. 2012. V. 324. No. 21. P. 3448.
  16. Kramarenko E.Yu., Chertovich A.V., Stepanov G.V. et al. // Smart Mater. Struct. 2015. V. 24. Art. No. 035002.
  17. Borin D.Yu., Stepanov G.V., Odenbach S. // J. Phys. Conf. Ser. 2013. V. 412. Art. No. 012040.
  18. Borin D.Yu., Stepanov G.V. // J. Optoelectr. Adv. Mater. 2013. V. 15. No. 3—4. P. 249.
  19. Borin D., Stepanov G., Musikhin A. // Polymers. 2020. V. 12. No. 10. Art. No.2371.
  20. Sorokin V.V., Sokolov B.O., Stepanov G.V., Kramarenko E.Yu. // JMMM. 2019. V. 459. P. 268.
  21. Stepanov G.V., Abramchuk S.S., Grishin D.A. et al. // Polymer. 2007. V. 48. P. 488.
  22. Stepanov G.V., Borin D.Yu., Raikher Yu.L, Melenev P.V. // J. Phys. Cond. Matter. 2008. V. 20. Art. No. 204121.
  23. http://www.magnetolab.ru/video/video7_00.mp4.
  24. Borin D.Yu., Stepanov G.V. // J. Intell. Mater. Syst. Struct. 2015. V. 26. No. 14. P. 1893.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Dependence of the elongation of the sample in a non-uniform magnetic field on the magnitude of the magnetic field on the surface of the electromagnet: 1 - deformation parallel to the direction of structuring (direction A-A, b), 2 - deformation perpendicular to the direction of structuring (direction B-B, b)

下载 (151KB)
3. Fig. 2. Multipolar magnetization of the MAE strip. Diagram of the magnetization of the MAE strip and photographs of the bending of the magnetized MAE in a magnetic field.

下载 (147KB)
4. Fig. 3. Changes in surface structure under the influence of a magnetic field. Conditional magnification ×10. The scale of the two images is the same. Initial (a) and in a magnetic field of 100 mT (b). Photograph of a 3D profile of the MAE sample surface without a magnetic field (c) and in a magnetic field of 200 mT (d). Magnification ×500.

下载 (1MB)
5. Fig. 4. Surface structure after polymerization of liquid MAE film in a magnetic field.

下载 (372KB)
6. Fig. 5. Dependence of voltage on the relative elongation of MAE without a field (1) and in a magnetic field of different strengths (curves 2–20 mT, 7–270 mT).

下载 (86KB)

版权所有 © Russian Academy of Sciences, 2024