ABOUT THE CORE STRUCTURE OF THE SCHWARTZ PROBLEM FOR FIRST-ORDER ELLIPTIC SYSTEMS ON A PLANE

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The Schwarz problem for

Негізгі сөздер

Авторлар туралы

V. Nikolaev

Novgorod State University

Email: vg14@inbox.ru
Russia

Әдебиет тізімі

  1. Гахов, Ф.Д. Краевые задачи / Ф.Д. Гахов. — М. : Наука, 1977. — 641 с.
  2. Мусхелишвили, Н.И. Сингулярные интегральные уравнения / Н.Н. Мусхелишвили. — М. : Наука, 1968. — 513 с.
  3. Бицадзе, А.В. Краевые задачи для эллиптических уравнений второго порядка / А.В. Бицадзе. — М. : Наука, 1966. — 202 с.
  4. Солдатов, А.П. Функции, аналитические по Дуглису / А.П. Солдатов. — Белгород : Изд-во БелГУ, 2016. — 88 с.
  5. Солдатов, А.П. Гипераналитические функции и их приложения / А.П. Солдатов // Совр. математика и ее приложения. — 2004. — Т. 15. — С. 142–99.
  6. Vasilyev, V.B. General boundary value problems for pseudo differential equations and related difference equations / V.B. Vasilyev // Adv. Differ. Equat. — 2013. — V. 289. — P. 1–7.
  7. Vasilyev, V.B. Pseudo differential equations on manifolds with non-smooth boundaries / V.B. Va- silyev // Differ. and Difference Equat. Appl. — 2013. — V. 47. — P. 625–637.
  8. Vasilyev, V.B. On some transmission problems in a plane corner / V.B. Vasilyev // Tatra Mt. Math. Publ. — 2015. — V. 63. — P. 291–301.
  9. Soldatov, A.P. On representation of solutions of second order elliptic systems on the plane / A.P. Soldatov // More Progresses in Analysis. Proc. of the 5th Int. ISAAC Congress. 25–30 July 2009. — Catania, Italy, 2009. — V. 2. — P. 1171–1184.
  10. Солдатов, А.П. Задача Шварца для функций, аналитических по Дуглису / А.П. Солдатов // Совр. математика и ее приложения. — 2010. — Т. 67. — С. 99–102.
  11. Nikolaev, V. On a certain functional equation and its application to the Schwarz problem / V. Nikolaev, V. Vasilyev // Mathematics. — 2023. — V. 11, № 12. — Art. 2789.
  12. Nikolaev, V.G. Solutions to the Schwarz problem with diagonalizable matrices in ellipse / V.G. Ni- kolaev // J. Math. Sci. — 2020. — V. 244, № 4. — P. 655–670.
  13. Nikolaev, V.G. A class of orthogonal polynomials on the boundary of an ellipse / V.G. Nikolaev // J. Math. Sci. — 2019. — V. 239, № 3. — P. 363–380.
  14. Николаев В.Г. Об одном преобразовании задачи Шварца / В.Г. Николаев // Вестн. Самарск. гос. ун-та. Сер. естественнонаучная. — 2012. — Т. 6, № 97. — С. 27–34.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2024