Investigation of the properties of soft carbons and graphite by electrochemical impedance spectroscopy. Analysis of the distribution function of relaxation times

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this work, using the Distribution of Relaxation Times (DRT) function, we analyzed the changes in the electrochemical impedance spectra of lithium-carbon cells during cathodic polarization of a carbon electrode. Soft carbon and graphite were studied as carbon materials. It is shown that the analysis of electrochemical impedance spectra of lithium-carbon cells using the distribution function of relaxation times allows us to establish the number of electrochemical elements and calculate their parameters. Application of DRT functions for modeling of electrochemical impedance showed that there are 8 electrochemical elements in lithium-carbon cells and allowed to quantify their parameters. The obtained results are in good agreement with theoretical ideas about the structure of carbon materials and electrochemical processes occurring during their polarization. The analysis of electrochemical impedance spectra of lithium-carbon cells using the relaxation time distribution function is a more objective method compared to the method of equivalent electrical circuits.

全文:

受限制的访问

作者简介

D. Kolosnitsyn

Ufa Federal Research Centre of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: dkolosnitsyn@gmail.com

Ufa Institute of Chemistry

俄罗斯联邦, Ufa

E. Kuzmina

Ufa Federal Research Centre of the Russian Academy of Sciences

Email: dkolosnitsyn@gmail.com

Ufa Institute of Chemistry

俄罗斯联邦, Ufa

N. Egorova

Ufa Federal Research Centre of the Russian Academy of Sciences

Email: dkolosnitsyn@gmail.com

Ufa

俄罗斯联邦, Ufa Institute of Chemistry

V. Kolosnitsyn

Ufa Federal Research Centre of the Russian Academy of Sciences

Email: dkolosnitsyn@gmail.com

Ufa Institute of Chemistry

俄罗斯联邦, Ufa

参考

  1. Wang, Y., Ma, Z., and Zhang, X., Mechanism and application in lithium ion batteries of ferrocene catalyzed coal tar pitch to prepare fibrous carbon material with soft and hard carbon hybrid structure, Fuel, 2024, vol. 366, p. 131325. https://doi.org/10.1016/j.fuel.2024.131325
  2. Babu, B., Carbon–based Materials for Li-ion Battery, Batteries & Supercaps, 2024, vol. 7. https://doi.org/10.1002/batt.202300537
  3. Mochida, I., Ku, C., Yoon, S., and Korai, Y., Anodic performance and mechanism of mesophase-pitch-derived carbons in lithium ion batteries, J. Power Sources, 1998, vol. 75, Issue 2, p. 214. https://doi.org/10.1016/S0378-7753(98)00101-3
  4. Чудова, Н. В., Шакирова, Н. В., Кузьмина, Е. В., Колосницын В.С. Влияние диапазона потенциалов заряда и разряда на электрохимическую емкость нефтяного кокса и графита. Башкир. хим. журн. 2021. № 28. С. 85. [Chudova, N.V., Shakirova, N.V., Kuzmina, E.V., and Kolosnitsyn, V.S., Vliyanie diapazona potencialov zaryada i razryada na elektrohimicheskuyu emkost' neftyanogo koksa i grafita, Bashkirskij himicheskij zhurnal (in Russian), 2021, no. 28, p. 85.]
  5. Schroeder, M., Menne, S., Ségalini, J., Saurel, D., Casas-Cabanas, M., Passerini, S., Winter, M., and Balducci, A., Considerations about the influence of the structural and electrochemical properties of carbonaceous materials on the behavior of lithium-ion capacitors, J. Power Sources, 2014, vol. 266, p. 250. https://doi.org/10.1016/j.jpowsour.2014.05.024
  6. Kuzmina, E.V., Chudova, N.V., and Kolosnitsyn, V.S., Effect of Current Density on Specific Characteristics of Negative Electrodes for Lithium-Ion Batteries Based on Heat-Treated Petroleum Coke, Russ. J. Electrochem., 2023, vol. 59, p.153.
  7. Стойнов, З.Б., Графов, Б.М., Савова-Стойнова Б., Елкин, В.В. Электрохимический импеданс. М.: Наука, 1991. 336 с. [Stojnov, Z.B., Grafov, B.M., Savova-Stojnova, B., and Elkin, V.V. Elektrohimicheskij impedans, Moscow: Nauka, 1991. 336p.]
  8. Импедансная спектроскопия: теория и применение. Учебное пособие. Екатеринбург. Изд-во Урал. ун-та. 2017. [Impedansnaya spektroskopiya: teoriya i primenenie(in Russian). Uchebnoe posobie. Ekaterinburg. Izdatel'stvo Ural'skogo universiteta. 2017.]
  9. Иванищев, А.В., Чуриков, А.В., Иванищева, И.А. Импедансная спектроскопия литий-углеродных электродов. Электрохимия. 2009. Т. 44. С. 553. [Ivanishchev, A. V., Churikov, A. V., and Ivanishcheva, I. A., Impedance spectroscopy of lithium-carbon electrodes, Russ. J. Electrochem., 2008, vol. 44, p. 510.] https://doi.org/10.1134/S1023193508050030
  10. Секушин, Н.А. Двухчастотный критерий присутствия индуктивной составляющей в импедансе электрохимической ячейки. Электрохимия. 2010. Т. 46. С. 362. [Sekushin, N. A., Two-frequency criterion of the presence of inductive component in the electrochemical cell impedance, Russ. J. Electrochem, 2010, vol. 46, p. 345.] https://doi.org/10.1134/S1023193510030134
  11. Ерофеев, А.А. Теория автоматического управления. СПб.: Политехника, 2002. с. 302. [Erofeev, A.A. Teoriya avtomaticheskogo upravleniya (in Russian). St.P.: Politekhnika, 2002. 302 p.]
  12. Секушин, Н.А. Универсальная эквивалентная схема электрохимической ячейки. Электрохимия. 2009. Т. 45. С. 372. [Sekushin, N.A., Universal equivalent circuit of electrochemical cell, Russ. J. Electrochem., 2009, vol. 45, p. 350.] https://doi.org/10.1134/S1023193509030173
  13. Kerner, Zsolt & Pajkossy, Tamás, Measurement of adsorption rates of anions on Au(111) electrodes by impedance spectroscopy, Electrochim. Acta, 2002, vol. 47, p. 2055. https://doi.org/10.1016/S0013-4686(02)00073-7
  14. Lasia, Andrzej. Electrochemical Impedance Spectroscopy and Its Applications. Springer, 2014.
  15. Schelder, W., Theory of the Frequency Dispersion of Electrode Polarization. Topology of Networks with Fractional Power Frequency Dependence, J. Phys. Chem., 1975, vol. 79, p. 127.
  16. Kerner, Z. and Pajkossy, T., Impedance of rough capacitive electrodes: The role of surface disorder, J. Electroanal. Chem., 1998, vol. 448, p. 139.
  17. Kerner, Z. and Pajkossy, T., On the origin of capacitance dispersion of rough electrodes, Electrochim. Acta, 2000, vol. 46, p. 207.
  18. Гаврилюк, А.Л., Осинкин, Д.А., Бронин, Д.И. О применении метода регуляризации Тихонова для вычисления функции распределения времен релаксации в импедансной спектроскопии. Электрохимия. 2017. Т. 53. С. 651. [Gavrilyuk, A.L., Osinkin, D.A., and Bronin, D.I., The use of Tikhonov regularization method for calculating the distribution function of relaxation times in impedance spectroscopy, Russ. J. Electrochem., 2017, vol. 53, p. 575.] https://doi.org/10.1134/S1023193517060040
  19. Qu, H., Zhang, X., Ji, W., Zheng, D., Zhang, X., and Ji, W., Impedance investigation of the high temperature performance of the solid-electrolyte-interface of a wide temperature electrolyte, J. Colloid and Interface Sci., 2022, vol. 608, p. 3079.
  20. Macutkevic, J., Banys, J., and Matulis, A., Determination of the Distribution of the Relaxation Times from Dielectric Spectra, Nonlinear Analysis. Modelling and Control, 2004, vol. 9, p. 75. https://doi.org/10.15388/NA.2004.9.1.15172
  21. Schönleber, Michael & Ivers-Tiffée, E., Approximability of impedance spectra by RC elements and implications for impedance analysis, Electrochem. Commun., 2015. https://doi.org/10.1016/j.elecom.2015.05.018
  22. Wan, T.H., Saccoccio, M., Chen, C., and Ciucci, F., Influence of the Discretization Methods on the Distribution of Relaxation Times Deconvolution: Implementing Radial Basis Functions with DRTtools, Electrochim. Acta, 2015, vol. 184, p. 483.
  23. Свид. 2022665869 РФ. Свидетельство об официальной регистрации программы для ЭВМ. “ElChemLab, DRT Analyzer” / Д.В. Колосницын; правообладатель УФИЦ РАН (RU). Опубл. 23.08.2022, Реестр программ для ЭВМ. 1 с. [2022665869 RF. “ElChemLab, DRT Analyzer” / D.V. Kolosnitsyn; UFRC RAS (RU). – published. 23.08.2022]
  24. Прилежаева, И.Н., Соловьев, Н.П., Храмушин, Н.И. Способ преобразования спектров импеданса для определения механизма электрохимической реакции. Электрохимия. 2004. Т. 40. С. 1425. [Prilezhaeva, I.N., Solov'ev, N.P., and Khramushin, N.I., A procedure for transforming impedance spectra for the determination of mechanism of electrochemical reactions, Russ. J. Electrochem., 2004, vol. 40, p. 1223.] https://doi.org/10.1023/B:RUEL.0000048659.28543.0c
  25. Zhang, S. and Shi, P., Electrochemical impedance study of lithium intercalation into MCMB electrode in a gel electrolyte, Electrochim. Acta, 2004, vol. 49, p. 1475. https://doi.org/10.1016/j.electacta.2003.10.033
  26. Zaban, A., Zinigrad, E., and Aurbach, D., Impedance Spectroscopy of Li Electrodes. 4. A General Simple Model of the Li-Solution Interphase in Polar Aprotic Systems, J. Phys. Chem., 1996, vol. 100, p. 3089.
  27. Wang, C., Appleby, A.J., and Little, F., Low-Temperature Characterization of Lithium-Ion Carbon Anodes via Microperturbation Measurement, J. Electrochem. Soc., 2002, vol. 149, p. A754. https://doi.org/10.1149/1.1474427
  28. Holzapfel, M., Martinent, A., Alloin, F., Le Gorrec, B., Yazami, R., and Montella, C., First lithiation and charge/discharge cycles of graphite materials, investigated by electrochemical impedance spectroscopy, J. Electroanal. Chem., 2003, vol. 546. p. 41. https://doi.org/10.1016/S0022-0728(03)00144-X
  29. Plank, Christian & Rüther, Tom & Jahn, Leonard & Schamel, Maximilian & Schmidt, Jan & Ciucci, Francesco & Danzer, Michael, A review on the distribution of relaxation times analysis: A powerful tool for process identification of electrochemical systems. J. Power Sources, 2023, vol. 594. https://doi.org/10.1016/j.jpowsour.2023.233845
  30. Lu, Yang & Zhao, Chen-zi & Huang, Jia-Qi & Zhang, Qiang, The timescale identification decoupling complicated kinetic processes in lithium batteries, Joule, 2022, vol. 6, p. 1172. https://doi.org/10.1016/j.joule.2022.05.005

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Chronopotentiograms of cathodic polarization at the first and second cycles of a carbon electrode based on disordered carbon (a) and graphite (b).

下载 (318KB)
3. Fig. 2. Evolution of impedance hodographs of lithium-carbon cells with working electrodes based on disordered carbon (left column) and graphite (right column) during lithiation at the 1st cycle. Ik=0.2 mA/cm2. The depth of lithiation is indicated in the graphs.

下载 (1MB)
4. Fig. 3. DRT impedance functions of lithium-RU, lithium-graphite and symmetric lithium-lithium cell after assembly. The electrochemical system is indicated in the graphs.

下载 (502KB)
5. Fig. 4. Experimental impedance hodographs of lithium-carbon cells with electrodes based on RU (a) and graphite (c) at lithiation depths of 428 and 410 mA h/g, hodographs of individual cell elements calculated from DRT functions, and simulated impedance hodographs of lithium-carbon cells with electrodes based on RU (c) and graphite (d).

下载 (125KB)
6. Fig. 5. Variation of DRT impedance function plots (in different scales) of a lithium-carbon cell with an RU-based electrode during lithiation at the first (left column) and second (right column) cycles. The depth of lithiation is indicated in the graphs.

下载 (811KB)
7. Fig. 6. Variation of DRT impedance function plots (at different scales) of a lithium-carbon cell with graphite-based electrode during lithiation at the first (left column) and second (right column) cycles. The depth of lithiation is indicated on the graphs.

下载 (828KB)

版权所有 © Russian Academy of Sciences, 2024