Current passage across the electrode/membrane/solution system. Part 2: steady-state diffusion-migration current. Ternary electrolyte
- 作者: Vorotyntsev M.A.1, Zader P.А.1
-
隶属关系:
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
- 期: 卷 60, 编号 12 (2024): Special issue “Electrochemistry-2023”, part 3
- 页面: 869–884
- 栏目: Regular articles
- URL: https://permmedjournal.ru/0424-8570/article/view/677979
- DOI: https://doi.org/10.31857/S0424857024120067
- EDN: https://elibrary.ru/NMQUON
- ID: 677979
如何引用文章
详细
A recently proposed express method for experimental determination of diffusion coefficients of electroactive ions inside membrane and their distribution coefficients at the membrane/solution interface (Russ. J. Electrochem., 2022, 58, 1103) is based on interpretation of the measured non-stationary current across the system: electrode/membrane/electrolyte solution after a potential step with the use of theoretical expressions for the time dependence of the current, including the steady-state regime. In previous publications, the application of this method to study the bromide anion transport across membrane is carried out under conditions of the selective permeability (permselectivity) of the membrane for non-electroactive counter-ions where the electric field intensity inside it is suppressed by their high concentration so that the movement of electroactive co-ions (bromide anions), having a much lower concentration inside the membrane, takes place via the pure diffusion mechanism, for which solutions are available in an analytical form. If the concentrations of electroactive co-ions and background counter-ions inside the membrane are comparable between one another their transport occurs under the influence of both diffusion and migration contributions to their fluxes. In particular, such a situation takes place in a ternary system of monovalent ions where both ions of the background electrolyte M+ and A–, as well as the electroactive anion X, penetrate into the membrane from the external solution, their concentrations inside the membrane being comparable to each other. The paper has derived analytical expressions for the steady-state distributions of the concentrations of all ionic components and of the electric field inside the membrane as a function of the amplitude of the passing direct current and of the ion concentrations in the bulk solution, as well as for the intensity of the limiting diffusion-migration current. In particular, it has been shown that at a low concentration of co-ions at the membrane/electrolyte solution interface (compared to the concentration of fixed charged groups of the membrane (Xm << Cf), the migration contribution to the flux of electroactive ions can be neglected so that the formulas derived in this work for the ternary electrolyte are reduced approximately to the corresponding expressions for the pure diffusional transport. If the opposite condition is fulfilled (Xm / Cf>>1), migration contributions to ion fluxes lead to a modification of the expression for the limiting diffusion-migration current.
全文:

作者简介
M. Vorotyntsev
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: mivo2010@yandex.com
俄罗斯联邦, Moscow
P. Zader
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Email: mivo2010@yandex.com
俄罗斯联邦, Moscow
参考
- Perry, M.L., Saraidaridis, J.D., and Darling, R.M., Crossover mitigation strategies for redox-flow batteries, Current Opinion in Electrochemistry, 2020, vol. 21, p. 311.
- Saadi, K., Nanikashvili, P., Tatus-Portnoy, Z., Hardisty, S., Shokhen, V., Zysler, M., and Zitoun, D., Crossover-tolerant coated platinum catalysts in hydrogen/bromine redox flow battery, J. Power Sources, 2019, vol. 422, p. 84.
- Darling, R.M., Weber, A.Z., Tucker, M. C., and Perry, M.L., The influence of electric field on crossover in redox-flow batteries, J. Electrochem. Soc., 2015, vol. 163, no. 1, p. A5014.
- Oh, K., Weber, A.Z., and Ju, H., Study of bromine species crossover in H2/Br2 redox flow batteries, Int. J. Hydrogen Energy, 2017, vol. 42, no. 6, p. 3753.
- Shi, Y., Wei, Z., Liu, H., and Zhao, J., Dynamic modeling of long-term operations of vanadium/air redox flow battery with different membranes, J. Energy Storage, 2022, vol. 50, p. 104171.
- Barton, J.L. and Brushett, F.R., A one-dimensional stack model for redox flow battery analysis and operation, Batteries, 2019, vol. 5, no. 1, p. 25.
- Cho, K.T., Albertus, P., Battaglia, V., Kojic, A., Srinivasan, V., and Weber, A.Z., Optimization and analysis of high‐power hydrogen/bromine‐flow batteries for grid‐scale energy storage, Energy Technology, 2013, vol. 1, no. 10, p. 596.
- Maurya, S., Shin, S.H., Lee, J.Y., Kim, Y., and Moon, S.H., Amphoteric nanoporous polybenzimidazole membrane with extremely low crossover for a vanadium redox flow battery, RSC advances, 2016, vol. 6, no. 7, p. 5198.
- Peng, S., Zhang, L., Zhang, C., Ding, Y., Guo, X., He, G., and Yu, G., Gradient‐Distributed Metal–Organic Framework–Based Porous Membranes for Nonaqueous Redox Flow Batteries, Advanced Energy Materials, 2018, vol. 8, no. 33, p. 1802533.
- Gvozdik, N.A., Sanginov, E.A., Abunaeva, L.Z., Konev, D.V., Usenko, A.A., Novikova, K.S., Stevenson K.J., and Dobrovolsky, Y. A., A Composite Membrane Based on Sulfonated Polystyrene Implanted in a Stretched PTFE Film for Vanadium Flow Batteries, ChemPlusChem, 2020, vol. 85, no. 12, p. 2580.
- Leung, P.K., Xu, Q., Zhao, T.S., Zeng, L., and Zhang, C., Preparation of silica nanocomposite anion-exchange membranes with low vanadium-ion crossover for vanadium redox flow batteries, Electrochim. Acta, 2013, vol. 105, p. 584.
- Bukola, S., Li, Z., Zack, J., Antunes, C., Korzeniewski, C., Teeter, G., & Pivovar, B., Single-layer graphene as a highly selective barrier for vanadium crossover with high proton selectivity, J. Energy Chemistry, 2021, vol. 59, p. 419.
- Huang, S.L., Yu, H.F., and Lin, Y.S., Modification of Nafion® membrane via a sol-gel route for vanadium redox flow energy storage battery applications, J. Chemistry, 2017, vol. 2017, p. 1.
- Will, F.G., Bromine Diffusion Through Nafion® Perfluorinated Ion Exchange Membranes, J. Electrochem. Soc., 1979, vol. 126, no. 1, p. 36.
- Park, J.W., Wycisk, R., and Pintauro, P.N., Nafion/PVDF nanofiber composite membranes for regenerative hydrogen/bromine fuel cells, J. Membrane Science, 2015, vol. 490, p. 103.
- Heintz, A. and Illenberger, C., Diffusion coefficients of Br2 in cation exchange membranes, J. Membrane Science, 1996, vol. 113, no. 2, p. 175.
- Yeo, R. and McBreen, J., Transport properties of Nafion membranes in electrochemically regenerative hydrogen/halogen cells, J. Electrochem. Soc, 1979, vol. 126, p. 1682.
- Baldwin, R.S., Electrochemical performance and transport properties of a Nafion membrane in a hydrogen–bromine cell environment, NASA TM (NAS1.15:89862), 1987, vol. 89862, p. 1.
- Kimble, M. and White, R., Estimation of the diffusion coefficient and solubility for a gas diffusing through a membrane, J. Electrochem. Soc., 1990, vol. 137, p. 2510.
- Haug, A.T. and White, R.E., Oxygen diffusion coefficient and solubility in a new proton exchange membrane, J. Electrochem. Soc., 2000, vol. 147, p. 980.
- White, H.S., Leddy, J., and Bard, A.J., Polymer films on electrodes. 8. Investigation of charge-transport mechanisms in Nafion polymer modified electrodes, J. Am. Chem. Soc., 1982, vol. 104, p. 4811.
- Mello, R.M.Q. and Ticianelli, E.A., Kinetic study of the hydrogen oxidation reaction on platinum and Nafion ® covered platinum electrodes, Electrochim. Acta, 1997, vol. 42, no. 6, p. 1031.
- Ayad, A., Naimi, Y., Bouet, J., and Fauvarque, J.F., Oxygen reduction on platinum electrode coated with Nafion®, J. Power Source, 2004, vol. 130, p. 50.
- Brunetti, B., Desimoni, E., and Casati, P., Determination of Caffeine at a Nafion‐Covered Glassy Carbon Electrode, Electroanalysis, 2007, vol. 19, no. 2–3, p. 385.
- Sadok, I., Tyszczuk-Rotko, K., and Nosal-Wierci´nska, A., Bismuth particles Nafion covered boron-doped diamond electrode for simultaneous and individual voltammetric assays of paracetamol and caffeine, Sensors & Actuators, B: Chemical, 2016, vol. 235, p. 263.
- Конев, Д.В., Истакова, О.И., Карташова, Н.В., Абунаева, Л.З., Пырков, П.В. Локтионов, П.А., Воротынцев, М.А. Электрохимическое измерение коэффициента диффузии коиона через ионообменную мембрану. Электрохимия. 2022. Т. 58. С. 870. [Konev, D.V., Istakova, O.I., Kartashova, N.V., Abunaeva, L.Z., Pyrkov, P.V., Loktionov, P.A., and Vorotyntsev, M.A., Electrochemical Measurement of Co-Ion Diffusion Coefficient in Ion-Exchange Membranes, Russ. J. Electrochem., 2022, vol. 58, p. 1103.]
- Konev, D.V., Istakova, O.I., and Vorotyntsev, M.A., Electrochemical measurement of interfacial distribution and diffusion coefficients of electroactive species for ion-exchange membranes, Membranes, 2022, vol. 12, no. 11, p. 1041.
- Левич, В.Г. Физико-химическая гидродинамика, М: Государственное издательство физико-математической литературы, 1959. С. 284–296. [Levich, V.G. Physicochemical hydrodynamics (in English), Englewood Cliffs, N.J.: Prentice-Hall, 1962. p. 278–286.]
- Myland, J.C. and Oldham, K.B., Limiting currents in potentiostatic voltammetry without supporting electrolyte, Electrochemistry Communications, 1999, vol. 1, no. 10, p. 467.
- Bieniasz, L.K., Analytical formulae for chronoamperometry of a charge neutralisation process under conditions of linear migration and diffusion, Electrochemistry Communications, 2002, vol. 4, p. 917.
- Lange, R. and Doblhofer, K., The transient response of electrodes coated with membrane-type polymer films under conditions of diffusion and migration of the redox ions, J. Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, vol. 237, p. 13.
- Pfabe, K.A., A problem in nonlinear ion transport, Lincoln: University of Nebraska, PhD Thesis, 1995. 125 p.
- Cohn, S., Pfabe, K., and Redepenning, J., A similarity solution to a problem in nonlinear ion transport with a nonlocal condition, Math. Mod. Meth. Appl. Sci., 1999, vol. 9, p. 445.
- Pfabe, K. and Shores, T.S., Numerical methods for an ion transport problem, Appl. Numer. Math., 2000, vol. 32, p. 175.
- Воротынцев, М.А., Задер, П.А. Эволюция системы электрод – мембрана – раствор бинарного электролита после скачка потенциала. Часть 1: интервал коротких времен. Электрохимия. 2024. Т. 60. № 7, в печати. [Vorotyntsev, M.A. and Zader, P.A., Passage of Diffusion-Migration Current Across Electrode/Membrane/Solution System. Part 1: Short-Time Evolution. Binary Electrolyte (Equal Mobilities), Russ. J. Electrochem., 2024, vol. 60, no. 7, p. 532.]
- Vorotyntsev, M.A., Lopez, C., and Vieil, E., On Interpretation of Optical-Beam Deflection Data at Excess of a Background Electrolyte, J. Electroanal. Chem., 1994, vol. 368, p. 155.
- Левич, В.Г. Физико-химическая гидродинамика, М: Государственное издательство физико-математической литературы, 1959. С. 296–299. [Levich, V.G. Physicochemical hydrodynamics (in English), Englewood Cliffs, N.J.: Prentice-Hall, 1962. p. 293–297.]
- Britz, D., Digital Simulation in Electrochemistry, Berlin: Springer, 1988. 338 p.
- Helfferich, F.G., Ion Exchange, New York: Dover Publications, Inc., 1995. 624 p.
- Заболоцкий, В.И., Никоненко, В.В. Перенос ионов в мембранах, М.: Наука, 1996. 392 с. [Zabolotsky, V.I. and Nikonenko, V.V., Ion Transfer in Membranes (in Russian), Moscow: Nauka, 1996. 392 p.]
- Strathmann, H., Ion-Exchange Membrane Separation Processes, Amsterdam: Elsevier, 2004. 348 p.
- Tanaka, Y., Ion Exchange Membranes: Fundamentals and Applications, Amsterdam: Elsevier, 2007. 546 p.
- Newman, J.S., Electrochemical Systems, London – Englewood Cliffs: Prentice-Hall, Inc., 1973. 432 p.
补充文件
