Pyrolytic Decomposition of Polyethylene in the Presence of Aluminosilicate Materials Containing Nickel Oxide

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The work is devoted to the study of the pyrolysis of high-density polyethylene (PE) in the presence of aluminosilicate materials containing nickel oxide. The process of catalytic pyrolysis of plastics makes it possible to convert polymers into chemical compounds, which can later be used as an additional source of fuels, raw materials for the chemical industry or polymer production. The physicochemical parameters of materials containing nickel oxide have been established using the following methods: IR-Fourier spectroscopy; x-ray diffraction analysis; N2 physical adsorption method; thermogravimetric analysis; pyrolytic gas chromatography. The dependences of the chemical composition of PE pyrolysis products on the type of support used and the presence of nickel oxide. The presence of nickel oxide in the studied aluminosilicates increases the Lewis acidity, which increases the content of aromatic compounds in the pyrolysis products. The activation energy of the PE pyrolysis process in the presence of MCM-41 containing nickel oxide was calculated from experimental data.

Full Text

Restricted Access

About the authors

V. B. Kharitontsev

Laboratory of Theory and Optimization of Chemical and Technological Processes, University of Tyumen

Email: v.elyshev@utmn.ru
Russian Federation, 15a Perekopskaya st., Tyumen, 625003

M. V. Grigoriev

Laboratory of Theory and Optimization of Chemical and Technological Processes, University of Tyumen

Email: v.elyshev@utmn.ru
Russian Federation, 15a Perekopskaya st., Tyumen, 625003

Е. A. Tissen

Laboratory of Theory and Optimization of Chemical and Technological Processes, University of Tyumen

Email: v.elyshev@utmn.ru
Russian Federation, 15a Perekopskaya st., Tyumen, 625003

P. A. Zubenko

Laboratory of Theory and Optimization of Chemical and Technological Processes, University of Tyumen

Email: v.elyshev@utmn.ru
Russian Federation, 15a Perekopskaya st., Tyumen, 625003

N. Yu. Tretyakov

Institute of Chemistry, University of Tyumen

Email: v.elyshev@utmn.ru
Russian Federation, 15a Perekopskaya st., Tyumen, 625003

A. V. Elyshev

World-Class Research Center “Advanced Digital Technologies”, University of Tyumen

Author for correspondence.
Email: v.elyshev@utmn.ru
Russian Federation, 14 Republic st., Tyumen, 625003

References

  1. Бракк Д.Г. // Экономическая безопасность. 2022. T. 5. № 2. C. 673.
  2. Kim S.-K., Kim J.-S., Lee H., Lee H-J. // J. Hazard. Mater. 2021. V. 403. P. 123997.
  3. Muhammad C., Onwudili J. A., Williams P. T. // J. Anal. Appl. Pyrol. 2015. V. 113. P. 332.
  4. Soufizadeh M., Doniavi A., Hasanzadeh R. // Int. J. Environ. Sci. Technol. 2022. V.19. P. 3897.
  5. Larionov K.B., Slyusarskiy K. V., Ivanov A. A., Mishakov I. V., Pak A. Y. // J. Air Waste Manag. Assoc. 2022. V. 72. № 2. P. 161.
  6. Kenzhin R.M., Bauman Y. I., Mishakov I. V., Zibareva I. V. // Juniper Online J. Mater. Sci. 2019. V. 5. № 2. P. 555660. P. 1–7.
  7. Ding Y., Zhao J., Liu J-W., Zhou J., Cheng L., Zhao J., Shao Z., Iris C., Pan B., Li X., Hu Z.-T. // J. Clean. Prod. 2021. V. 293. P. 126144.
  8. Miandad R., Barakata M. A., Rehan M., Aburiazaiza A. S., Ismail I. M.I., Nizami A. S. // Waste Management. 2017. V. 69. P. 66.
  9. Li K., Wang Y., Zhou W., Cui T., Yang J., Sun Z., Min Y., Lee J-M. // Chemosphere. 2022. V. 299. P. 134440.
  10. Lu P., Wu H., Liang C., Wei Y., Song Z. // Appl. Clay Sci. 2021. V. 205. P. 106052.
  11. Skaribas S.P., Pomonis P. J., Grange P., Delmon B. // J. Chem. Soc. Faraday Trans. 1992. V. 88. P. 3217.
  12. Wu Q., Wang Y., Jiang L., Yang Q., Ke L., Peng Y., Yang S., Dai L., Liu Y., Ruan R. // Biores. Technol. 2020. V. 299. P. 122611.
  13. Yao D., Yang H., Chen H., Williams P. T. // Appl. Catal. B: Environ. 2018. V. 239. P. 565.
  14. Ding K., Liu S., Huang Y., Liu S., Zhou N., Peng P., Wang Y., Chen P., Ruan R. // Energy Convers. Manag. 2019. V. 196. P. 1316.
  15. Prabhahar R.S.S., Anandhan M. // Int. J. Appl. Eng. Res. 2018. V. 13. № 10. P. 8426.
  16. Rashid A., Mohammed S. A., Abbas H. F., AlSaadi M.A., Ali N., Khalid N., Yousif E., Alyaqoobi S., Al Riami K. // Biointerface Res. Appl. Chem. 2023. V. 13. I. 3. P. 216.
  17. https://doi.org/10.33263/BRIAC133.216
  18. Datka J., Turek A.M, Jehng J.M, Wachs I. E. // J. Catal. 1992. V. 135. P. 186.
  19. Costa C.S., Munoz M., Ribeiro M. R., Silva J. M. // Catal. Today. 2021. V. 379. P. 192.
  20. Chen C., Li H. Davis M. E. // Micropor. Mater. 1993. V. 2. P. 17.
  21. Харитонцев В.Б., Тиссен Е. А., Матвеенко Е. С., Михайлов Я. А., Третьяков Н. Ю., Загоруйко А. Н., Елышев А. В. // Катализ в промышленности. 2023. T. 23. № 2. C. 58. (Kharitontsev V. B., Tissen E. A., Matveenko E. S., Mikhailov Ya. A., Tret’yakov N. Yu., Zagoruiko A. N. and Elyshev A. V. // Catalysis in Industry. 2023. V.15, № 4. P. 397.)
  22. Munoz H.-J., Blanco C., Gil A., Vicente M.-A., Galeano L.-A. // Materials. 2017. V. 10. № 12. P. 1364.
  23. Ferrini P., Dijkmans J., De Clercq R., Van de Vyver S., Dusselier M., Jacobs P. A., Sels B. F. // Coord. Chem. Rev. 2017. V. 343. P. 220.
  24. Островский Н. М. // Кинетика и катализ. 2022. Т. 63. № 1. С. 61.
  25. Чалов К.В., Луговой Ю. В., Сульман М. Г., Косивцов Ю. Ю. // Вестник ТвГУ. 2020. Т. 42. № 4. С. 120.
  26. Хандави М. М. Исследование термического разложения и горения полимерных отходов методом кислородной микрокалориметрии. Автореф. дис… к. т. н. Санкт-Петербург: Санкт-Петербургский политехнический университет Петра Великого, 2021. 23 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1

Download (51KB)
3. Fig.2

Download (93KB)
4. Fig.3

Download (139KB)
5. Fig.4

Download (170KB)