Catalytic properties of cerium oxide formed on titanium by plasma electrolytic oxidation
- Authors: Tarkhanova I.G.1, Eseeva E.A.1, Lukashov M.O.1, Yarovaya T.P.2, Lukiyanchuk I.V.2
-
Affiliations:
- Moscow State University
- Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences
- Issue: Vol 65, No 3 (2024): Специальный номер посвящен памяти Олега Наумовича Темкина
- Pages: 335-342
- Section: ARTICLES
- URL: https://permmedjournal.ru/0453-8811/article/view/660347
- DOI: https://doi.org/10.31857/S0453881124030065
- EDN: https://elibrary.ru/RVPOXZ
- ID: 660347
Cite item
Abstract
A comparative analysis of the catalytic properties of Ce-containing composites 2.5% Ce-TiO2/Ti and 10.5 %Ce-TiO2/Ti has been performed in oxidative desulfurization reactions. TiO2/Ti-supported catalysts with low and high cerium concentrations (2.4–2.6 and 8.7–12.4 at. % Ce, respectively) have been obtained by plasma electrolytic oxidation (PEO) in electrolytes containing equal (0.05 mol/L) concentrations of Ce2(SO4)3 and Ce(SO4)2. It was found that Ce(SO4)2 use can increase the cerium concentration in the composites and respectively their activity in the of methyl phenyl sulfide oxidation by hydrogen peroxide. Moreover, the use of 10.5% Ce-TiO2/Ti catalyst allows almost complete oxidation of dibenzothiophene with atmospheric oxygen at 130°C in 3 h.
About the authors
I. G. Tarkhanova
Moscow State University
Author for correspondence.
Email: itar_msu@mail.ru
ORCID iD: 0000-0002-6347-7346
Doctor of Chemical Sciences, Leading Researcher, Department of Chemical Kinetics, Faculty of Chemistry
Russian Federation, Leninskie gory, 1/3, Moscow, 119991E. A. Eseeva
Moscow State University
Email: itar_msu@mail.ru
ORCID iD: 0000-0001-7538-9012
PhD, Senior Researcher, Department of Oil Chemistry and Organic Catalysis, Faculty of Chemistry
Russian Federation, Leninskie gory, 1/3, Moscow, 119991M. O. Lukashov
Moscow State University
Email: itar_msu@mail.ru
ORCID iD: 0000-0002-4656-6232
Postgraduate student of the Department of Oil Chemistry and Organic Catalysis, Faculty of Chemistry
Russian Federation, Leninskie gory, 1/3, Moscow, 119991T. P. Yarovaya
Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences
Email: itar_msu@mail.ru
ORCID iD: 0000-0002-8358-1095
Researcher, Laboratory of Electrochemical Processes, Department of Electrochemical Systems and Surface Modification Processes
Russian Federation, prosp. 100-letiya Vladivostoka, 159, Vladivostok, 690022I. V. Lukiyanchuk
Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences
Email: itar_msu@mail.ru
ORCID iD: 0000-0003-1680-4882
PhD, Senior Researcher, Laboratory of Electrochemical Processes, Department of Electrochemical Systems and Surface Modification Processes
Russian Federation, prosp. 100-letiya Vladivostoka, 159, Vladivostok, 690022References
- Aliofkhazraei M., Macdonald D.D., Matykina E., Parfenov E.V., Egorkin V.S., Curran J.A., Troughton S.C., Sinebryukhov S.L., Gnedenkov S.V., Lampke T., Simchen F., Nabavi H.F. Review of plasma electrolytic oxidation of titanium substrates: Mechanism, properties, applications, and limitations // Appl. Surf. Sci. Adv. 2021. V. 5. Art. 100121. https://doi.org/10.1016/j.apsadv.2021.100121
- Clyne T.W., Troughton S.C. A review of recent work on discharge characteristics during plasma electrolytic oxidation of various metals // Int. Mater. Rev. 2019. V. 64. № 3. P. 127. https://doi.org/10.1080/09506608.2018.1466492
- Serdechnova M., Mohedano M., Kuznetsov B., Mendis C.L., Starykevich M., Karpushenkov S., Tedim J., Ferreira M.G.S., Blawert C., Zheludkevich M.L. PEO coatings with active protection based on in-situ formed LDH-nanocontainers // J. Electrochem. Soc. 2017. V. 164. № 2. P. C36. https://doi.org/10.1149/2.0301702jes
- Raźny N., Dmitruk A., Naplocha K. Anticorrosive PEO coatings on metallic cast heat enhancers for thermal energy storage // Surf. Eng. 2023. V. 39. № 6. P. 641. https://doi.org/10.1080/02670844.2023.2236363
- Tarkhanova I.G., Bryzhin A.A., Gantman M.G., Yarovaya T.P., Lukiyanchuk I.V., Nedozorov P.M., Rudnev V.S. Ce-, Zr-containing oxide layers formed by plasma electrolytic oxidation on titanium as catalysts for oxidative desulfurization // Surf. Coat. Technol. 2019. V. 362. P. 132. https://doi.org/10.1016/j.surfcoat.2019.01.101
- Брыжин А.А., Руднев В.С., Лукиянчук И.В., Васильева М.С., Тарханова И.Г. Влияние состава оксидных слоев, полученных методом ПЭО, на механизм пероксидного окисления сероорганических соединений // Кинетика и катализ. 2020. Т. 61. № 2. C. 262. https://doi.org/10.31857/S0453881120020021
- Lukiyanchuk I.V., Vasilyeva M.S., Ustinov A.Yu., Bryzhin A.A., Tarkhanova I.G. Ti/TiO2/NiWO4 +WO3 composites for oxidative desulfurization and denitrogenation // Surf. Coat. Technol. 2022. V. 434. P. 128200. https://doi.org/10.1016/j.surfcoat.2022.128200
- Lukiyanchuk I.V., Tarkhanova I.G., Vasilyeva M.S., Yarovaya T.P., Ustinov A.Yu., Vyaliy I.E., Kuryavyi V.G. Plasma electrolytic formation of TiO2-VOx-MoOy-P2O5 coatings on titanium and their application as catalysts for the oxidation of S- and N-containing substances // Mater. Chem. Phys. 2024. V. 311. Art. 128520. https://doi.org/10.1016/j.matchemphys.2023.128520
- Patcas F., Krysmann W. Efficient catalysts with controlled porous structure obtained by anodic oxidation under spark-discharge // Appl. Catal. A: Gen. 2007. V. 316. № 2. P. 240. https://doi.org/10.1016/j.apcata.2006.09.028
- Jiang X., Zhang L., Wybornov S., Staedler T., Hein D., Wiedenmann F., Krumn W., Rudnev V., Lukiyanchuk I. Highly efficient nanoarchitectured Ni5TiO7 catalyst for biomass gasification // ACS Appl. Mater. Interfaces. 2012. V. 4. № 8. Р. 4062. https://doi.org/10.1021/am3008449
- Vasilic R., Stojadinovic S., Radic N., Stefanov P., Dohcevic-Mitrovic Z., Grbic B. One-step preparation and photocatalytic performance of vanadium doped TiO2 coatings // Mater. Chem. Phys. 2015. V. 151. P. 337. https://doi.org/10.1016/j.matchemphys.2014.11.077
- Huang X., Beck M.J. Size-dependent appearance of intrinsic Oxq “activated oxygen” molecules on ceria nanoparticles // Chem. Mater. 2015. V. 27. № 17. P. 5840. https://doi.org/10.1021/acs.chemmater.5b02426
- Montini T., Melchionna M., Monai M., Fornasiero P. Fundamentals and catalytic applications of CeO2-based materials // Chem. Rev. 2016. V. 116. № 10. P. 5987. https://doi.org/10.1021/acs.chemrev.5b00603
- Руднев В.С. Рост анодных оксидных слоев в условиях действия электрических разрядов // Защита металлов. 2007. Т. 43. № 3. С. 296. https://doi.org/10.1134/S0033173207030125
- Shi Y., Liu G., Zhang B., Zhang X. Oxidation of refractory sulfur compounds with molecular oxygen over a Ce–Mo–O catalyst // Green Chem. 2016. V. 18. № 19. P. 5273. https://doi.org/10.1039/C6GC01357K
- Liu X.-Y., Li X.-P., Zhao R.-X. Ce2(MoO4)3 as an efficient catalyst for aerobic oxidative desulfurization of fuels // Pet. Sci. 2022. V. 19. № 2. Р. 861. https://doi.org/10.1016/j.petsci.2021.10.029
- Aliofkhazraei M., Gharabagh R.S., Teimouri M., Ahmadzadeh M., Darband G.B., Hasannejad H. Ceria embedded nanocomposite coating fabricated by plasma electrolytic oxidation on titanium // J. Alloys Compd. 2016. V. 685. P. 376. http://dx.doi.org/10.1016/j.jallcom.2016.05.315
- Tsai D.-S., Chou C.-C. Influences of growth species and inclusions on the current–voltage behavior of plasma electrolytic oxidation: A Review // Coatings. 2021. V. 11. P. 270. https://doi.org/10.3390/coatings11030270
- Rudnev V.S., Tyrina L.M., Lukiyanchuk I.V., Yarovaya T.P., Malyshev I.V., Ustinov A.Yu., Nedozorov P.M., Kaidalova T.A. Titanium-supported Ce-, Zr-containing oxide coatings modified by platinum or nickel and copper oxides and their catalytic activity in CO oxidation // Surf. Coat. Technol. 2011. V. 206. P. 417. https://doi.org/10.1016/j.surfcoat.2011.07.041
- Руднев В.С., Килин К.Н., Яровая Т.П., Недозоров П.М. Оксидные цирконийсодержащие пленки на титане // Защита металлов. 2008. Т. 44. № 1. С. 69. doi: 10.1134/S0033173208010086
- Елинсон С.В., Петров К.И. Аналитическая химия циркония и гафния. Москва: Наука, 1965. 240 с.
- Dong Y., Hang J., Ma, Z., Xu H.,Yang H.,Yang L., Bai L., Wei D., Wang W. Chen H. Preparation of Co-Mo-O ultrathin nanosheets with outstanding catalytic performance in aerobic oxidative desulfurization // Chem. Commun. 2019. V. 55. № 93. P. 13995 https://doi.org/10.1039/C9CC07452J
- Abdelkader E., Nadjia L., Naceur B., Boukoussa B., Mohamed A. Fenton-like catalytic degradations of Neutral Red in water using cerium oxide polishing powder // Adv. Sci. Technol. Innov. 2018. P. 129. https://doi.org/10.1007/978-3-319-70548-4_44
- Abdullah W.N.W., Bakar W.A.W.A., Ali R., Mokhtar W.N.A.W., Omar M.F. Catalytic oxidative desulfurization technology of supported ceria based catalyst: physicochemical and mechanistic studies // J. Clean. Prod. 2017. V. 162. P. 1455. http://dx.doi.org/10.1016/j.jclepro.2017.06.084
- Zou Y., Wang C., Chen H., Ji H., Zhu Q., Yang W., Chen L., Chen Z., Zhu W. Scalable and facile synthesis of V2O5 nanoparticles via ball milling for improved aerobic oxidative desulfurization // Green Energy Environ. 2021. V. 6. № 2. P. 169. https://doi.org/10.1016/j.gee.2020.10.005
- Zhang M., Liao W., Wei Y., Wang C., Fu Y., Gao Y., Zhu L., Zhu W., Li H. Aerobic oxidative desulfurization by nanoporous tungsten oxide with oxygen defects // ACS Appl. Nano Mater. 2021. V. 4. № 2. P. 1085. https://doi.org/10.1021/acsanm.0c02639
Supplementary files
