Catalytic properties of cerium oxide formed on titanium by plasma electrolytic oxidation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A comparative analysis of the catalytic properties of Ce-containing composites 2.5% Ce-TiO2/Ti and 10.5 %Ce-TiO2/Ti has been performed in oxidative desulfurization reactions. TiO2/Ti-supported catalysts with low and high cerium concentrations (2.4–2.6 and 8.7–12.4 at. % Ce, respectively) have been obtained by plasma electrolytic oxidation (PEO) in electrolytes containing equal (0.05 mol/L) concentrations of Ce2(SO4)3 and Ce(SO4)2. It was found that Ce(SO4)2 use can increase the cerium concentration in the composites and respectively their activity in the of methyl phenyl sulfide oxidation by hydrogen peroxide. Moreover, the use of 10.5% Ce-TiO2/Ti catalyst allows almost complete oxidation of dibenzothiophene with atmospheric oxygen at 130°C in 3 h.

About the authors

I. G. Tarkhanova

Moscow State University

Author for correspondence.
Email: itar_msu@mail.ru
ORCID iD: 0000-0002-6347-7346

Doctor of Chemical Sciences, Leading Researcher, Department of Chemical Kinetics, Faculty of Chemistry

Russian Federation, Leninskie gory, 1/3, Moscow, 119991

E. A. Eseeva

Moscow State University

Email: itar_msu@mail.ru
ORCID iD: 0000-0001-7538-9012

PhD, Senior Researcher, Department of Oil Chemistry and Organic Catalysis, Faculty of Chemistry

Russian Federation, Leninskie gory, 1/3, Moscow, 119991

M. O. Lukashov

Moscow State University

Email: itar_msu@mail.ru
ORCID iD: 0000-0002-4656-6232

Postgraduate student of the Department of Oil Chemistry and Organic Catalysis, Faculty of Chemistry

Russian Federation, Leninskie gory, 1/3, Moscow, 119991

T. P. Yarovaya

Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences

Email: itar_msu@mail.ru
ORCID iD: 0000-0002-8358-1095

Researcher, Laboratory of Electrochemical Processes, Department of Electrochemical Systems and Surface Modification Processes

Russian Federation, prosp. 100-letiya Vladivostoka, 159, Vladivostok, 690022

I. V. Lukiyanchuk

Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences

Email: itar_msu@mail.ru
ORCID iD: 0000-0003-1680-4882

PhD, Senior Researcher, Laboratory of Electrochemical Processes, Department of Electrochemical Systems and Surface Modification Processes

Russian Federation, prosp. 100-letiya Vladivostoka, 159, Vladivostok, 690022

References

  1. Aliofkhazraei M., Macdonald D.D., Matykina E., Parfenov E.V., Egorkin V.S., Curran J.A., Troughton S.C., Sinebryukhov S.L., Gnedenkov S.V., Lampke T., Simchen F., Nabavi H.F. Review of plasma electrolytic oxidation of titanium substrates: Mechanism, properties, applications, and limitations // Appl. Surf. Sci. Adv. 2021. V. 5. Art. 100121. https://doi.org/10.1016/j.apsadv.2021.100121
  2. Clyne T.W., Troughton S.C. A review of recent work on discharge characteristics during plasma electrolytic oxidation of various metals // Int. Mater. Rev. 2019. V. 64. № 3. P. 127. https://doi.org/10.1080/09506608.2018.1466492
  3. Serdechnova M., Mohedano M., Kuznetsov B., Mendis C.L., Starykevich M., Karpushenkov S., Tedim J., Ferreira M.G.S., Blawert C., Zheludkevich M.L. PEO coatings with active protection based on in-situ formed LDH-nanocontainers // J. Electrochem. Soc. 2017. V. 164. № 2. P. C36. https://doi.org/10.1149/2.0301702jes
  4. Raźny N., Dmitruk A., Naplocha K. Anticorrosive PEO coatings on metallic cast heat enhancers for thermal energy storage // Surf. Eng. 2023. V. 39. № 6. P. 641. https://doi.org/10.1080/02670844.2023.2236363
  5. Tarkhanova I.G., Bryzhin A.A., Gantman M.G., Yarovaya T.P., Lukiyanchuk I.V., Nedozorov P.M., Rudnev V.S. Ce-, Zr-containing oxide layers formed by plasma electrolytic oxidation on titanium as catalysts for oxidative desulfurization // Surf. Coat. Technol. 2019. V. 362. P. 132. https://doi.org/10.1016/j.surfcoat.2019.01.101
  6. Брыжин А.А., Руднев В.С., Лукиянчук И.В., Васильева М.С., Тарханова И.Г. Влияние состава оксидных слоев, полученных методом ПЭО, на механизм пероксидного окисления сероорганических соединений // Кинетика и катализ. 2020. Т. 61. № 2. C. 262. https://doi.org/10.31857/S0453881120020021
  7. Lukiyanchuk I.V., Vasilyeva M.S., Ustinov A.Yu., Bryzhin A.A., Tarkhanova I.G. Ti/TiO2/NiWO4 +WO3 composites for oxidative desulfurization and denitrogenation // Surf. Coat. Technol. 2022. V. 434. P. 128200. https://doi.org/10.1016/j.surfcoat.2022.128200
  8. Lukiyanchuk I.V., Tarkhanova I.G., Vasilyeva M.S., Yarovaya T.P., Ustinov A.Yu., Vyaliy I.E., Kuryavyi V.G. Plasma electrolytic formation of TiO2-VOx-MoOy-P2O5 coatings on titanium and their application as catalysts for the oxidation of S- and N-containing substances // Mater. Chem. Phys. 2024. V. 311. Art. 128520. https://doi.org/10.1016/j.matchemphys.2023.128520
  9. Patcas F., Krysmann W. Efficient catalysts with controlled porous structure obtained by anodic oxidation under spark-discharge // Appl. Catal. A: Gen. 2007. V. 316. № 2. P. 240. https://doi.org/10.1016/j.apcata.2006.09.028
  10. Jiang X., Zhang L., Wybornov S., Staedler T., Hein D., Wiedenmann F., Krumn W., Rudnev V., Lukiyanchuk I. Highly efficient nanoarchitectured Ni5TiO7 catalyst for biomass gasification // ACS Appl. Mater. Interfaces. 2012. V. 4. № 8. Р. 4062. https://doi.org/10.1021/am3008449
  11. Vasilic R., Stojadinovic S., Radic N., Stefanov P., Dohcevic-Mitrovic Z., Grbic B. One-step preparation and photocatalytic performance of vanadium doped TiO2 coatings // Mater. Chem. Phys. 2015. V. 151. P. 337. https://doi.org/10.1016/j.matchemphys.2014.11.077
  12. Huang X., Beck M.J. Size-dependent appearance of intrinsic Oxq “activated oxygen” molecules on ceria nanoparticles // Chem. Mater. 2015. V. 27. № 17. P. 5840. https://doi.org/10.1021/acs.chemmater.5b02426
  13. Montini T., Melchionna M., Monai M., Fornasiero P. Fundamentals and catalytic applications of CeO2-based materials // Chem. Rev. 2016. V. 116. № 10. P. 5987. https://doi.org/10.1021/acs.chemrev.5b00603
  14. Руднев В.С. Рост анодных оксидных слоев в условиях действия электрических разрядов // Защита металлов. 2007. Т. 43. № 3. С. 296. https://doi.org/10.1134/S0033173207030125
  15. Shi Y., Liu G., Zhang B., Zhang X. Oxidation of refractory sulfur compounds with molecular oxygen over a Ce–Mo–O catalyst // Green Chem. 2016. V. 18. № 19. P. 5273. https://doi.org/10.1039/C6GC01357K
  16. Liu X.-Y., Li X.-P., Zhao R.-X. Ce2(MoO4)3 as an efficient catalyst for aerobic oxidative desulfurization of fuels // Pet. Sci. 2022. V. 19. № 2. Р. 861. https://doi.org/10.1016/j.petsci.2021.10.029
  17. Aliofkhazraei M., Gharabagh R.S., Teimouri M., Ahmadzadeh M., Darband G.B., Hasannejad H. Ceria embedded nanocomposite coating fabricated by plasma electrolytic oxidation on titanium // J. Alloys Compd. 2016. V. 685. P. 376. http://dx.doi.org/10.1016/j.jallcom.2016.05.315
  18. Tsai D.-S., Chou C.-C. Influences of growth species and inclusions on the current–voltage behavior of plasma electrolytic oxidation: A Review // Coatings. 2021. V. 11. P. 270. https://doi.org/10.3390/coatings11030270
  19. Rudnev V.S., Tyrina L.M., Lukiyanchuk I.V., Yarovaya T.P., Malyshev I.V., Ustinov A.Yu., Nedozorov P.M., Kaidalova T.A. Titanium-supported Ce-, Zr-containing oxide coatings modified by platinum or nickel and copper oxides and their catalytic activity in CO oxidation // Surf. Coat. Technol. 2011. V. 206. P. 417. https://doi.org/10.1016/j.surfcoat.2011.07.041
  20. Руднев В.С., Килин К.Н., Яровая Т.П., Недозоров П.М. Оксидные цирконийсодержащие пленки на титане // Защита металлов. 2008. Т. 44. № 1. С. 69. doi: 10.1134/S0033173208010086
  21. Елинсон С.В., Петров К.И. Аналитическая химия циркония и гафния. Москва: Наука, 1965. 240 с.
  22. Dong Y., Hang J., Ma, Z., Xu H.,Yang H.,Yang L., Bai L., Wei D., Wang W. Chen H. Preparation of Co-Mo-O ultrathin nanosheets with outstanding catalytic performance in aerobic oxidative desulfurization // Chem. Commun. 2019. V. 55. № 93. P. 13995 https://doi.org/10.1039/C9CC07452J
  23. Abdelkader E., Nadjia L., Naceur B., Boukoussa B., Mohamed A. Fenton-like catalytic degradations of Neutral Red in water using cerium oxide polishing powder // Adv. Sci. Technol. Innov. 2018. P. 129. https://doi.org/10.1007/978-3-319-70548-4_44
  24. Abdullah W.N.W., Bakar W.A.W.A., Ali R., Mokhtar W.N.A.W., Omar M.F. Catalytic oxidative desulfurization technology of supported ceria based catalyst: physicochemical and mechanistic studies // J. Clean. Prod. 2017. V. 162. P. 1455. http://dx.doi.org/10.1016/j.jclepro.2017.06.084
  25. Zou Y., Wang C., Chen H., Ji H., Zhu Q., Yang W., Chen L., Chen Z., Zhu W. Scalable and facile synthesis of V2O5 nanoparticles via ball milling for improved aerobic oxidative desulfurization // Green Energy Environ. 2021. V. 6. № 2. P. 169. https://doi.org/10.1016/j.gee.2020.10.005
  26. Zhang M., Liao W., Wei Y., Wang C., Fu Y., Gao Y., Zhu L., Zhu W., Li H. Aerobic oxidative desulfurization by nanoporous tungsten oxide with oxygen defects // ACS Appl. Nano Mater. 2021. V. 4. № 2. P. 1085. https://doi.org/10.1021/acsanm.0c02639

Supplementary files

Supplementary Files
Action
1. JATS XML