Z/E Isomerization of Acetylene Oxidative Carbmethoxylation Products and the Proposed Process Mechanism
- Autores: Prokhorov S.A.1, Matrosova Y.A.1, Oshanina I.V.1
-
Afiliações:
- MIREA – Russian Technological University
- Edição: Volume 65, Nº 4 (2024)
- Páginas: 451-462
- Seção: ARTICLES
- URL: https://permmedjournal.ru/0453-8811/article/view/684231
- DOI: https://doi.org/10.31857/S0453881124040067
- EDN: https://elibrary.ru/RIDGXJ
- ID: 684231
Citar
Resumo
A new catalytic system for the production of dimethyl maleate (DMM) and dimethyl fumarate (DMF) by acetylene oxidative carbomethoxylation is proposed. It is shown that in the PdBr2-LiBr – РсСо – MeOH system, DMM is predominantly formed. The effect of HBr, thiourea (Tu) and solvent additives on the rate of DMM Z/E isomerization reaction is studied. It is shown that the use of an additional organic solvent and a decrease in the methanol concentration increase in Z/E isomerization rate and leads to DMF formation. A mechanism for DMM, DMF and dimethyl succinate formation is proposed (DMS).
Texto integral

Sobre autores
S. Prokhorov
MIREA – Russian Technological University
Autor responsável pela correspondência
Email: oshanina_i@mail.ru
Rússia, Moscow
Yu. Matrosova
MIREA – Russian Technological University
Email: oshanina_i@mail.ru
Rússia, Moscow
I. Oshanina
MIREA – Russian Technological University
Email: oshanina_i@mail.ru
Rússia, Moscow
Bibliografia
- Темкин О.Н. Гомогенный металлокомплексный катализ. Кинетические аспекты. Москва: ИКЦ “Академкнига”. 2008. 918 c. (Temkin O.N. Homogeneous Catalysis with Metal Complexes. Wiley, 2012. 806 р.)
- Темкин О.Н. “Золотой век” гомогенно-каталитической химии алкинов: димеризация и олигомеризация алкинов // Кинетика и катализ. 2019. Т. 60. № 6. С. 683. (Temkin O.N. “Golden Age” of Homogeneous Catalysis Chemistry of Alkynes: Dimerization and Oligomerization of Alkynes // Kinet. Catal. 2019. V. 60. № 6. P. 689.)
- Мехрякова Н.Г., Брук Л.Г., Калия О.Л., Темкин О.Н., Прудников А.Ю. О механизмах карбонилирования ацетилена в растворах комплексов палладия // Кинетика и катализ. 1979. Т. 20. № 3. С. 629.
- Темкин О.Н. О кинетических моделях многомаршрутных реакций в гомогенном металлокомплексном катализе. // Кинетика и катализ. 2012. Т. 53. № 3. С. 326. (Temkin O.N. Kinetic Models of Multi-Route Reactions in Homogeneous Catalysis with Metal Complexes (A Revew) // Kinet. Catal. 2012. V. 53. № 3. P. 313.)
- Брук Л.Г., Гарбузюк И.А., Маркина С.В., Отараку Д.И., Ошанина И.В., Паздерский Ю.А., Присяжнюк С.М., Романюк И.М., Темкин О.Н. Способ получения янтарного ангидрида. Патент RU 2044731 C1, 1995.
- Bruk L.G., Oshanina I.V., Kozlova A.P., Vorontsov E.V., Temkin O.N. Mechanistic Study of Acetylene Carbonylation to Anhydrides of Dicarboxylic Acids in Solutions of Palladium Complexes // J. Mol. Catal. A: Chem. 1995. V. 104. № 1. P. 9.
- Bruk L.G., Oshanina I.V., Kozlova A.P., Temkin O.N., Odintsov K.Yu. Mechanism of Synthesis of Maleic and Succinic Anhydrides by Carbonylation of Acetylene in Solutions of Palladium Complexes // Russ. Chem. Bull. 1998. V. 47. № 6. P. 1071.
- Temkin O.N., Bruk L.G. Palladium(II, I, 0) Complexes in Catalytic Reactions of Oxidative Carbonylation // Kinet. Catal. 2003. V. 44. № 5. P. 601.
- Bruk L.G., Oshanina I.V., Zakieva A.S., Kozlova A.P., Temkin O.N. Critical Phenomena in Homogeneous Catalytic Reaction of Acetylene Carbonylation to Maleic Anhydride // Kinet. Catal. 1998. V. 39. № 2. P. 167.
- Bruk L.G., Kozlova A.P., Marshakha O.V., Oshanina I.V., Temkin O.N., Kaliya O.L. New Catalytic Systems for Oxidative Carbonylation of Acetylene to Maleic Anhydride // Russ. Chem. Bull. 1999. V. 48. № 10. P. 1875.
- Емельянова Г.Р. Каталитический синтез янтарной кислоты и ее эфиров карбонилированием ацетилена. Дисс. …канд. хим. наук. Москва: МИТХТ, 1985.
- Roxanne P.S. Tecfidera: an Approach for Repurposing // Pharm. Pat. Anal. 2014. V. 3. № 2. P. 183.
- Рыжакова Е.Н., Шилов М.С., Лаврентьев В.В. Лекарственная форма в виде капсулы, содержащая таблетки с диметилфумаратом. Патент RU 2742745 C1, 2021.
- Kawashiri T, Miyagi A., Shimizu S., Shigematsu N., Kobayashi D., Shimazoe T. Dimethyl fumarate ameliorates chemotherapy agent-induced neurotoxicity in vitro // J. Pharmacol. Sci. 2018. V. 137. P. 202.
- Cai Z., Wan Y., Becker M.L., Long Y.-Z., Dean D. Poly(propylene fumarate)-based materials: Synthesis, functionalization, properties, device fabrication and biomedical applications // Biomaterials. 2019. V. 208. P. 45.
- Эльман А.Р., Корнеева Г.А., Носков Ю.Г., Хан В.Н., Шишкина Е.Ю., Негримовский В.М., Пономаренко Е.П., Кононов Л.О., Брук Л.Г., Ошанина И.В., Тёмкин О.Н., Кузьмин С.Г. Синтез продуктов, меченных изотопом 13С, для медицинской диагностики // Российский химический журнал. 2013. Т. 57. № 5. С. 3.
- Jensen P.R., Karlsson M., Meier S., Duus J.Ø., Lerche M.H. Hyperpolarized Amino Acids for In Vivo Assays of Transaminase Activity // Chem. Eur. J. 2009. V. 15. P. 10010.
- Takeuchi K., Ng E., Malia T.J., Wagner G. 1-13C amino acid selective labeling in a 2H15N background for NMR studies of large proteins // J. Biomol. NMR. 2007. V. 38. P. 89.
- Karlsson M., Jensen P.R., Duus J.Ø., Meier S., Lerche M.H. Development of Dissolution DNP-MR Substrates for Metabolic Research // Appl. Magn. Reson. 2012. V. 43. P. 223.
- Tadashi K., Isaburo H., Junko O., Asuka I., Kunihiko S. 13C-containing diagnostic agent for diabetes. EP913161A2, 1999.
- Alper H., Despeyroux B., Woell J.B. Selective Hydroesterification of Alkynes to Mono-or Diesters // Tetrahedron Lett. 1983. V. 24. P. 5691.
- Cassar L., Chiusoli G.P., Guerrieri F. Synthesis of Carboxylic Acids and Esters by Carbonylation Reactions at Atmospheric Pressure Using Transition Metal Catalysts // Synthesis. 1973. V. 509. P. 21.
- Gabriele B., Costa M., Salernoe G., Chiusoli G.P. An Efficient and Selective Palladium-catalysed Oxidative Dicarbonylation of Alkynes to Alkyl- or Arylmaleic Esters // J. Chem. Soc. Perkin Trans. 1994. V. 1. P. 83.
- We X., Ma Z., Lu J., Mu X., Hu B. The highly efficient and selective dicarbonylation of acetylene catalysed by palladium nanosheets supported on activated carbon // New J. Chem. 2020. V. 44. P. 11835.
- Li X., Feng S., Song X., Yuan Q., Li B., Ning L., Chen W., Li J., Ding Y. The Evolution of Single-Site Pd1/AC Catalyst During the Process of Acetylene Dialkoxycarbonylation // J. Catal. 2022. V. 413. P. 762.
- Li X., Feng S., Hemberger P., Bodi A., Song X., Yuan Q., Mu J., Li B., Jiang Z., Ding Y. Iodide-Coordinated Single-Site Pd Catalysts for Alkyne Dialkoxycarbonylation // ACS Catal. 2021. V. 11. P. 9242.
- Wei X., Ma Z., Lu J., Mu X. Hu B. Strong Metal-Support Interactions between Palladium Nanoclusters and Hematite Toward Enhanced Acetylene Dicarbonylation at Low Temperature // New J. Chem. 2020. V. 44. P. 2121.
- Wei X., Ma Z., Mu X., Zhanga Q., Hu B. Synergistic effect of hematite facet and Pd nanocluster for enhanced acetylene dicarbonylation // Mol. Catal. 2021. V. 499. P. 111303.
- Ошанина И.В., Голобородько С.И., Робинова Е.А., Руснак И.Н., Никифоров С.А., Прохоров С.А., Темкин О.Н., Калия О.Л. Окисление монооксида углерода кислородом в водно-ацетонитрильных растворах бромидных комплексов палладия(II) в присутствии фталоцианинатов Сo(II), Fe(II) и Mn(III) // Тонкие химические технологии. 2019. Т. 14. № 6. С. 76.
- Путин А.Ю., Кацман Е.А., Брук Л.Г. Кинетика и механизм реакции окисления СО В СО2 в каталитической системе PdBr2–CuBr2–ТГФ–Н2О // Кинетика и катализ. 2023. Т. 64. № 4. С. 408. (Putin A.Yu., Katsman E.A., Bruk L.G. Kinetics and Mechanism of the Oxidation of CO to CO2 in the PdBr2–CuBr2–THF–H2O Catalytic System // Kinet. Catal. 2023. V. 64. № 4. P. 412.)
- Ma Y.-L., Zhou R.-J., Zeng X.-Y., An Y.-X., Qiu S.-S., Nie L.-J. Synthesis, DFT and antimicrobial activity assays in vitro for novel cis/trans-but-2-enedioic acid esters // J. Mol. Struct. 2014. V. 1063. P. 226.
- Lima M.T., Finelli F.G., de Oliveira A.V.B., Kartnaller V., Cajaiba J.F., Leão R.A.C., de Souza R.O.M.A. Continuous-flow synthesis of dimethyl fumarate: a powerful small molecule for the treatment of psoriasis and multiple sclerosis // RSC Adv. 2020. V. 10. P. 2490.
- Putin A.Y., Katsman E.A., Bruk L.G. State of Palladium Complexes in the PdBr2–LiBr–CH3CN–H2O Catalytic System, Used to Obtain Succinic Anhydride // Russ. J. Phys. Chem. A. 2019. V. 93. № 2. P. 222.
- Tan E.H.P., Lloyd-Jones G.C., Harvey J.N., Lennox A.J.J., Mills B.M. [(RCN)2PdCl2]-Catalyzed E/Z Isomerization of Alkenes: A Non-Hydride Binuclear Addition–Elimination Pathway // Angew. Chem. Int. Ed. 2011. V. 50. P. 9602.
- Sakaki S., Kanai H., Tarama K. Isomerization of 1-Olefins by Dihalogenobis(nitrile)palladium Complexes [PdX2(RCN)2] // Can. J. Chem. 1974. V. 52. P. 2857.
- Zargarian D., Alper H. Palladium Chloride Catalyzed Dicarbonylation of Terminal Alkynes // Organometallics. 1991. V. 10. P. 2914.
- Gabriele B., Salernoe G., Costa M., Chiusoli G.P. //Combined Oxidative and Reductive Carbonylation of Terminal Alkynes with Palladium Iodide-Thiourea Catalysts // J. Organomet. Chem. 1995. V. 503. P. 21.
- Marcotrigiano G., Battistuzzi R., Peyronel G. Binuclear Halogen-bridged Complexes of Palladium(II) with Thiourea: Pd2Tu2X4 and their Bridge-Splitting Reactions // J. Inorg. Nucl. Chem. 1973. V. 5. P. 2265.
Arquivos suplementares
