Modeling of Crytical Steps of Conversion of Syntesis Gas into Alcohols on Modified Molybdenum Disulfide Catalysts Using DFT in Plane Wave Basis Set

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The work discusses mechanistic aspects of higher alcohol syntesys on KCoMoS catalysts. A model of the active site is constructed and used in DFT calculations of surface species involved in highter alcohol synthesis. The activation energy of the key steps is found using NEB approach. Two main paths of C-O bond scissions are considered: the one involving formation of methyl and methylene intermidiates. Mechanism of the folloup chain growth is considered. The role of potassium is studied by comparing energy profiles of higher alcohol synthesis on active sites modified and not-modified by on pristine and potassium modified active sites. The most obvious effect of introduction of potassium into the model is stabilization of methilene intermidiate.

Texto integral

Acesso é fechado

Sobre autores

E. Permyakov

N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: permeakra@ioc.ac.ru
Rússia, Moscow

V. Kogan

N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences

Email: permeakra@ioc.ac.ru
Rússia, Moscow

Bibliografia

  1. Zaman S., Smith K.J. // Catal. Rev. Sci. Eng. 2012. V. 54. № 1. P. 41.
  2. Catalysis by transition metal sulphides: From molecular theory to industrial application. Eds. P. Raybaud, H. Toulhoat. Paris: Editions Technip, 2013.
  3. Daage M., Chianelli R.R. // J. Catal. 1994. V. 149. № 2. P. 414.
  4. Mom R.V., Louwen J.N., Frenken J.W.M., Groot I.M.N. // Nature Commun. 2019. V. 10. Art. 2546.
  5. Salazar N., Rangarajan S., Rodríguez-Fernández J., Mavrikakis M., Lauritsen J.V. // Nature Commun. 2020. V. 11. Art. 4369.
  6. Gandubert A.D., Krebs E., Legens C., Costa D., Guillaume D., Raybaud P. // Catal. Today. 2008. V. 130. № 1. P. 149.
  7. Topsøe H., Clausen B.S., Candia R., Wivel C., Mørup S. // J. Catal. 1981. V. 68. № 2. P. 433.
  8. Permyakov E.A., Dorokhov V.S., Maximov V.V., Nikulshin P.A., Pimerzin A.A., Kogan V.M. // Catal. Today. 2018. V. 305. P. 19.
  9. Kogan V.M., Rozhdestvenskaya N.N., Korshevets I.K. // Appl. Catal. A: Gen. 2002. V. 234. № 1–2. P. 207.
  10. Ishutenko D., Nikulshin P., Pimerzin A. // Catal. Today. 2016. V. 271. P. 16.
  11. Дорохов В.С., Ишутенко Д.И., Никульшин П.А., Коцарева К.В., Трусова Т.Н., Елисеев О.Л., Лапидус А.Л., Рождественская Н.Н., Коган В.М. // Кинетика и катализ. 2013. Т. 54. С. 253. (Dorokhov V.S., Bondarenko T.N., Eliseev O.L., Lapidus A.L., Rozhdestvenskaya N.N., Kogan V.M., Ishutenko D.I., Nikul'Shin P.A., Kotsareva K.V., Trusova E.A. // Kinet. Catal. 2013. V. 54. № 2. P. 243.)
  12. Коган В.М., Никульшин П.А., Дорохов В.С., Пермяков Е.А., Можаев А.В., Ишутенко Д.И., Елисеев О.Л., Рождественская Н.Н., Лапидус. А.Л. // Изв. АН. Серия хим. 2014. T. 63. № 2. С. 332. (Kogan V.M., Nikul’shin P.A., Dorokhov V.S., Permyakov E.A., Mozhaev A.V., Ishutenko D.., Eliseev O.L., Rozhdestvenskaya N.N., Lapidusa A.L. // Russ. Chem. Bull. 2014. V. 63. № 2. P. 332.)
  13. Maximov V.V., Permyakov E.A., Dorokhov V.S., Wang A., Kooyman P.J., Kogan V.M. // ChemCatChem. 2020. V. 12. P. 1443.
  14. Dorokhov V.S., Permyakov E.A., Nikulshin P.A., Maximov V.V., Kogan V.M. // J. Catal. 2016. V. 344. P. 841.
  15. Giannozzi P., Giannozzi P., Andreussi O., Brumme T., Bunau O., Nardelli M.B., Calandra M., Car R., Cavazzoni C., Ceresoli D., Cococcioni M., Colonna N., Carnimeo I., Corso A.В., de Gironcoli S., Delugas P., DiStasio R.A. Jr, Ferretti A., Floris A., Fratesi G., Fugallo G., Gebauer R., Gerstmann U., Giustino F., Gorni T., Jia J., Kawamura M., Ko H.-Y., Kokalj A., Küçükbenli E., Lazzeri M., Marsili M., Marzari N., Mauri F., Nguyen N.L., Nguyen H.-V., Otero-de-la-Roza A., Paulatto L., Poncé1 S., Rocca D., Sabatini D., Santra B., Schlipf M., Seitsonen A.P., Smogunov A., Timrov I., Thonhauser T., Umari P., Vast N., Wu X., Baroni S. // J. Phys. Condens. Matter. 2017. V. 29. P. 465901.
  16. Van Setten M.J., Giantomassi M., Bousquet E., Verstraete M.J., Hamann D.R., Gonze X., Rignanese G.-M. // Comput. Phys. Commun. 2018. V. 226. P. 39.
  17. Permyakov E.A., Maximov V.V., Kogan V.M. // Mendeleev Commun. 2021. V. 31. № 4. P. 532.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Schematic of the computational model, projection onto the z = 0 plane. Dotted lines show the boundaries of the repeating section of the ribbon; coloured font highlights the atoms of the active centre; blue circles show the positions of potassium atoms for the model: solid - those closer to the observer and obscuring molybdenum atoms behind them, dashed - the model ribbon obscured by a molybdenum atom

Baixar (316KB)
3. Fig. 2. Schematic of the computational model, projection on the plane x = 0, blue circles show the positions of potassium atoms

Baixar (151KB)
4. Fig. 3. Schematic representation of the model active centre and adsorption energy (Ef) of CO and [H] at some positions

Baixar (453KB)
5. Fig. 4. Simplified scheme of the reaction network in ethanol synthesis. The energy of the structure relative to the reference structure 1 and CO and H2 molecules is given under the structures. Activation energies (ΔE#) are given for key stages. Energy values (eV) are given for structures with potassium (3K) and without potassium (0K)

Baixar (551KB)
6. Fig. 5. Energy profile of key steps of alcohol synthesis in the model without potassium

Baixar (116KB)
7. Fig. 6. Energy profile of key steps of alcohol synthesis in the model with three potassium atoms

Baixar (115KB)