Mathematical modelling of complex oscillations during ethylene oxidation over nickel catalyst
- Autores: Slinko M.M.1, Semendyaeva N.L.2,3, Makeev A.G.2, Bychkov V.Y.1
-
Afiliações:
- N.N. Semenov Federal Research Center for Chemical Physics RAS
- Moscow State University, Faculty of Computational Mathematics and Cybernetics
- Shenzhen MSU-BIT University
- Edição: Volume 66, Nº 2 (2025)
- Páginas: 91-103
- Seção: ARTICLES
- URL: https://permmedjournal.ru/0453-8811/article/view/689867
- DOI: https://doi.org/10.31857/S0453881125020039
- EDN: https://elibrary.ru/SKMTXB
- ID: 689867
Citar
Texto integral



Resumo
The article is devoted to the experimental and theoretical study of complex oscillations during ethylene oxidation on the nickel foil. Mathematical model was based on the 14-stage mechanism of reaction including the stages of oxidation and reduction of the Ni catalyst. An essential condition for the occurrence of an oscillatory behavior of the system was the adsorption of C2H4 and CO from the mobile pre-adsorption state. It was shown that for real values of the parameters, the mathematical model can describe both regular and irregular oscillations, as well as the “mixed-mode” oscillations observed in the experiment. For the first time oscillations with different properties and distinct mechanisms of their occurrence were detected in the same model. It was demonstrated that oscillations occurred as a result of a strong dependence of the reaction rate on the concentration of active sites both due to a variation in the concentration of the surface oxide or the surface carbon.
Texto integral

Sobre autores
M. Slinko
N.N. Semenov Federal Research Center for Chemical Physics RAS
Autor responsável pela correspondência
Email: slinko@polymer.chph.ras.ru
Rússia, Moscow
N. Semendyaeva
Moscow State University, Faculty of Computational Mathematics and Cybernetics; Shenzhen MSU-BIT University
Email: slinko@polymer.chph.ras.ru
Faculty of Computational Mathematics and Cybernetics
Rússia, Moscow; International University Park Road, Dayun New Town, Longgang District, Shenzhen, 518172, КитайA. Makeev
Moscow State University, Faculty of Computational Mathematics and Cybernetics
Email: slinko@polymer.chph.ras.ru
Rússia, Moscow
V. Bychkov
N.N. Semenov Federal Research Center for Chemical Physics RAS
Email: slinko@polymer.chph.ras.ru
Rússia, Moscow
Bibliografia
- Margolis L.Ya. // Adv. Catal. 1963. V. 14. P. 429. https://doi.org/10.1016/S0360-0564(08)60342-9
- Smolakova L., Kout M., Koudelkova E., Čapek L. // Ind. Eng. Chem. Res. 2015. V. 54. P. 12730. https://doi.org/10.1021/acs.iecr.5b03425
- Saraev A.A, Vinokurov Z.S, Kaichev V.V, Shmakov A.N, Bukhtiyarov V.I. // Catal. Sci. Technol. 2017. V. 7. P. 1646. https://doi.org/10.1039/C6CY02673G
- Kaichev V.V., Gladky A.Y., Prosvirin I.P., Saraev A.A., Hävecker M., Knop-Gericke A., Schlögl R., Bukhtiyarov V.I. // Surf. Sci. 2013. V. 609. P. 113. http://dx.doi.org/10.1016/j.susc.2012.11.012
- Zhang X.L., Mingos D.M.P., Hayward D.O. // Catal. Lett. 2001. V. 72. P. 147. https://doi.org/10.23/A:1009036128275
- Bychkov V.Yu., Tyulenin Yu.P., Slinko M.M., Korchak V.N. // Catal. Lett. 2007. V. 119. P. 339. https://doi.org/10.1007/s10562-007-9241-3
- Gladky A.Yu., Ermolaev V.K., Parmon V.N. // Catal. Lett. 2001. V. 77. P. 103. https://doi.org/10.23/A:1012703631994
- Bychkov V.Y., Tyulenin Y.P., Slinko M.M., Lomonosov V.I., Korchak V.N. // Catal. Lett. 2018. V. 148. P. 3646. https://doi.org/10.1007/s10562-018-2578-y
- Bychkov V.Yu., Tyulenin Yu.P., Slinko M.M., Korchak V.N. // Proc. of the IX International Conference “Mechanisms of catalytic reactions”. St. Petersburg, Russia. 2012. P. 165. https://doi.org/10.1595/147106713X660233
- Слинько М.М., Макеев А.Г. // Кинетика и катализ. 2020. Т. 61. № 4. С. 495. https://doi.org/10.1134/S0023158420040114
- Slinko M.M., Korchak V.N. Peskov N.V. // Appl. Catal. A: Gen. 2006. V. 303. № 2. P. 258. https://doi.org/10.1016/j.apcata.2006.02.010
- Lashina E.A., Kaichev V.V., Saraev A.A., Vinokurov Z.S., Chumakova N.A., Chumakov G.A., Bukhtiyarov V.I. // J. Phys. Chem. A. 2017. V. 121. P. 6874. https://doi.org/10.1021/acs.jpca.7b04525
- Ustyugov V.V, Kaichev V.V., Lashina E.A., Chumakova N.A., Bukhtiyarov V.I. // Kinet. Catal. 2016. V. 57. P. 113. https://doi.org/10.1134/S0023158415060142
- Lashina E.A., Kaichev V.V., Saraev A.A., Vinokurov Z.S., Chumakova N.A., Chumakov G.A., Bukhtiyarov V.I. // Top. Catal. 2020. V. 63. P. 33. https://doi.org/10.1007/s11244-019-01219-5
- Krisher K., Eiswirth M., Ertl G. // J. Chem. Phys. 1992. V. 96. P. 9161. https://doi.org/10.1063/1.462226
- Makeev A.G., Nieuwenhuys B.E. // J. Chem. Phys. 1998. V. 108. P. 3740. https://doi.org/10.1063/1.475767
- Stuckless J.T., Wartnaby C.E., Al-Sarraf N., Dixon-Warren St. J.B., Kovar M., King D.A. // J. Chem. Phys. 1997. V. 106. P. 2012. https://doi.org/10.1063/1.473308
- Kisliuk P. // J. Phys. Chem. Solids. 1957. V 3. P. 95. https://doi.org/10.1016/0022-3697(57)90054-9
- Hasse W., Günter H.L., Henzler M. // Surf. Sci. 1983. V. 126. P. 479. https://doi.org/10.1016/0039-6028(83)90746-X
- Stuckless J.T., Al-Sarraf N., Wartnaby C., King D.A. // J. Chem. Phys. 1993. V. 99. P. 2202. https://doi.org/10.1063/1.465282
- Winkler A., Rendulic K.D. // Surf. Sci. 1982. V. 118. P. 19. https://doi.org/10.1016/0039-6028(82)90010-3
- Brown W.A., Kose R., King D.A. // Chem. Rev. 1998. V. 98. P. 797. https://doi.org/10.1021/cr9700890
- Klimesch P., Henzler M. // Surf. Sci. 1979. V. 90. P. 57. https://doi.org/10.1016/0039-6028(79)90009-8
- Feigerle C.S., Desai S.R., Overbury S.H. // J. Chem. Phys. 1990. V. 93. P. 787. https://doi.org/10.1063/1.459532
- Madix R.J., Ertl G., Christmann K. // Chem. Phys. Lett. 1979. V. 62. P. 38. https://doi.org/10.1016/0009-2614(79)80408-X
- Delgado K.H., Maier L., Tischer S., Zellner A., Stotz H., Deutschmann O. // Catalysts. 2015. V. 5. P. 871. https://doi.org/10.3390/catal5020871
- Yang W.S., Xiang H.W., Li Y.W., Sun Y.H. // Catal. Today. 2000. V. 61. P. 237. https://doi.org/10.1016/S0920-5861(00)00368-0
- Maier L., Schädel B., Delgado K.H., Tischer S., Deutschmann O. // Top. Catal. 2011. V. 54. P. 845. https://doi.org/10.1007/s11244-011-9702-1
- Monnerat B., Kiwi-Minsker L., Renken A. // Chem. Eng. Sci. 2003. V. 58. P. 4911. https://doi.org/10.1016/j.ces.2002.11.006
- Sales B.C., Turner J.E., Maple M.B. // Surf. Sci. 1982. V. 114. P. 381. https://doi.org/10.1016/0039-6028(82)90692-6
- Bychkov V.Yu., Tulenin Yu.P., Slinko M.M., Gordienko Yu.A., Korchak V.N. // Catal. Lett. 2018. V. 148. P. 653. https://doi.org/10.1007/s10562-017-2283-2
- Makeev A.G., Peskov N.V., Semendyaeva N.L., Slinko M.M., Bychkov V.Yu., Korchak V.N. // Chem. Eng. Sci. 2019. V. 207. P. 644. https://doi.org/10.1016/j.ces.2019.06.053
- Bowker M. // Top. Catal. 2016. V. 59. P. 663. https://doi.org/10.1007/s11244-016-0538-6
- Zuhr R.A., Hudson J.B. // Surf. Sci. 1977. V. 66. P. 405. https://doi.org/10.1016/0039-6028(77)90028-0
- Behm R.J., Ertl G., Penka V. // Surf. Sci. 1985. V. 160. P. 387. https://doi.org/10.1016/0039-6028(85)90782-4
Arquivos suplementares
