Synthesis of Nickel(II) Complexes Containing Oxadithioether Ligands and Their Catalytic Properties in Propylene Oligomerization

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Nickel complexes with oxadithioether ligands [Ni(L)Br2] and [Ni(acac)(L)]CF3SO3 (L = R(S(CH2)2O(CH2)2S)R, R = Me, Et, n-Pr, i-Pr, n-Bu, i-Bu, benzyl, n-hexyl) were synthesized. The structural features of these complexes were analyzed by NMR and FTIR, elemental analysis as well as electrospray ionization mass spectrometry and density functional theory calculations. It was found that the signals in the 1H NMR spectra are broadened and shifted due to paramagnetic properties caused by the presence of the Ni(II) ion. The crystal structure of [Ni(Et(S(CH2)2O(CH2)2S)Et)(MeCN)Br2] (I) was determined by X-ray diffraction. In I, the coordination sphere of nickel is characterized by a slight distortion of the octahedral geometry of the central atom, and the oxadithioether ligand is coordinated tridentately in a meridional configuration. It was found that the catalytic systems {[Ni(L)Br2] or [Ni(acac)(L)]CF3SO3}/Al(i-Bu)2Cl in the presence of H2O additives as a promoter are characterized by high catalytic activity in propylene oligomerization. Using the [Ni(L)Br2]/Al(i-Bu)2Cl (L = R(S(CH2)2O(CH2)2S)R, R = n-Bu) catalyst system TON = 365900 mol C3H6/mol Ni (T = 25°C, solvent — 1,2-dichloroethane) with TOF = 4840 min−1 and dimers selectivity of 78% was obtained. Hypotheses of the routes of interaction of the [Ni(L)Br2] and [Ni(acac)(L)]CF3SO3 complexes with organoaluminum compounds in the presence of water additives, leading to catalytically active species, are discussed.

全文:

受限制的访问

作者简介

D. Suslov

Irkutsk State University

编辑信件的主要联系方式.
Email: suslov@chem.isu.ru

Department of Chemistry, Research Institute of Oil and Coal Chemical Synthesis

俄罗斯联邦, K. Marksa st., 1, Irkutsk, 664003

A. Suchkova

Irkutsk State University

Email: suslov@chem.isu.ru

Research Institute of Oil and Coal Chemical Synthesis

俄罗斯联邦, K. Marksa st., 1, Irkutsk, 664003

M. Bykov

Irkutsk State University

Email: suslov@chem.isu.ru

Department of Chemistry, Research Institute of Oil and Coal Chemical Synthesis

俄罗斯联邦, K. Marksa st., 1, Irkutsk, 664003

Z. Abramov

Irkutsk State University

Email: suslov@chem.isu.ru

Research Institute of Oil and Coal Chemical Synthesis

俄罗斯联邦, K. Marksa st., 1, Irkutsk, 664003

M. Pakhomova

Irkutsk State University

Email: suslov@chem.isu.ru

Department of Chemistry, Research Institute of Oil and Coal Chemical Synthesis

俄罗斯联邦, K. Marksa st., 1, Irkutsk, 664003

T. Orlov

Irkutsk State University

Email: suslov@chem.isu.ru

Research Institute of Oil and Coal Chemical Synthesis

俄罗斯联邦, K. Marksa st., 1, Irkutsk, 664003

T. Borodina

A.E. Favorsky Irkutsk Institute of Chemistry SB RAS

Email: suslov@chem.isu.ru
俄罗斯联邦, Favorsky st., 1, Irkutsk, 664033

V. Smirnov

A.E. Favorsky Irkutsk Institute of Chemistry SB RAS

Email: suslov@chem.isu.ru
俄罗斯联邦, Favorsky st., 1, Irkutsk, 664033

参考

  1. Keim W. // Angew. Chem. Int. Ed. 2013. V. 52. № 48. P. 12492.
  2. Belov G.P. // Russ. J. Appl. Chem. 2008. V. 81. № 9. P. 1655.
  3. Forestière A., Olivier-Bourbigou H., Saussine L. // Oil Gas Sci. Technol. Rev. IFP. 2009. V. 64. № 6. P. 649.
  4. Olivier-Bourbigou H., Breuil P.A.R., Magna L., Michel T., Espada Pastor M.F., Delcroix D. // Chem. Rev. 2020. V. 120. № 15. P. 7919.
  5. Breuil P.-A.R., Magna L., Olivier-Bourbigou H. // Catal. Lett. 2015. V. 145. № 1. P. 173.
  6. Bekmukhamedov G.E., Sukhov A.V., Kuchkaev A.M., Yakhvarov D.G. // Catalysts. 2020. V. 10. № 5. P. 498.
  7. Parfenova L.V., Bikmeeva A.Kh., Kovyazin P.V., Khalilov L.M. // Molecules. 2024. V. 29. № 2. P. 502.
  8. Fischer K., Jonas K., Misbach P., Stabba R., Wilke G. // Angew. Chem. Int. Ed. Engl. 1973. V. 12. № 12. P. 943.
  9. Ziegler K., Holzkamp E., Breil H., Martin H. // Angew. Chem. Int. Ed. Engl. 1955. V. 67. № 19–20. P. 541.
  10. Kent A.G., Lawrenson M.J., MacAlpine D.K. Патент США №4835328A, 1989.
  11. Itagaki M., Suzukamo G., Yamamoto M. Патент США №6388160B1, 2002.
  12. Захаркин Л.И., Жигарева Г.Г. // Нефтехимия. 1995. Т. 35. № 5. С. 435.
  13. Chauvin Y., Einloft S., Olivier H. // Ind. Eng. Chem. Res. 1995. V. 34. № 4. P. 1149.
  14. Rekhletskaya E.S., Ershov M.A., Savelenko V.D., Makhmudova A.E., Kapustin V.M., Abdellatief T.M.M., Potanin D.A., Smirnov V.A., Geng T., Abdelkareem M.A., Olabi A.G. // Energy Fuels. 2022. V. 36. № 19. P. 11829.
  15. Ershov M.A., Abdellatief T.M.M., Potanin D.A., Klimov N.A., Chernysheva E.A., Kapustin V.M. // Energy Fuels. 2020. V. 34. № 7. P. 8139.
  16. URL: https://www.axens.net/solutions/catalysts-adsorbents-grading-supply/oligomerization-catalysts (accessed: 31.07.2024).
  17. URL: https://www.stobec.com/en/product/8450-lc-1252-nickel-catalyst/ (accessed: 31.07.2024).
  18. Pillai S.M., Ravindranathan M., Sivaram S. // Chem. Rev. 1986. V. 86. P. 353.
  19. Skupinska J. // Chem. Rev. 1991. V. 91. P. 613.
  20. Wu S., Lu S. // J. Mol. Catal. Chem. 2003. V. 197. № 1–2. P. 51.
  21. Wu S., Lu S. // J. Mol. Catal. Chem. 2003. V. 198. № 1–2. P. 29.
  22. Carlini C., Marchionna M., Galletti A.M.R., Sbrana G. // Appl. Catal. А: Gen. 2001. V. 210. № 1–2. P. 173.
  23. Benvenuti F., Carlini C., Marchetti F., Marchionna M., Galletti A.M.R., Sbrana G., Maria A., Galletti R. // J. Organomet. Chem. 2001. V. 622. № 1–2. P. 286.
  24. Ewers J. // Angew. Chem. Int. Ed. Engl. 1966. V. 5. № 6. P. 584.
  25. Ткач В.С., Шмидт Ф.К., Сергеева Т.Н., Малахова Н.Д. // Нефтехимия. 1975. Т. 15. № 5. С. 703.
  26. Wu S., Lu S. // Appl. Catal. А: Gen. 2003. V. 246. № 2. P. 295.
  27. Borba K.M.N., de Souza M.O., de Souza R.F., Bernardo-Gusmão K. // Appl. Catal. А: Gen. 2017. V. 538. P. 51.
  28. Bogdanoviс B., Spliethoff B., Wilke G. // Angew. Chem. Int. Ed. Engl. 1980. V. 19. № 8. P. 622.
  29. Wu S., Lu S. // Chin. J. Chem. 2003. V. 21. № 4. P. 372.
  30. Svejda S.A., Brookhart M. // Organometallics. 1999. V. 18. № 1. P. 65.
  31. Abeywickrema R.R., Bennett M.A., Cavell K.J., Kony M.M., Masters A.F., Webb A.G. // J. Chem. Soc. Dalton Trans. 1993. № 1. P. 59.
  32. Cavell K.J., Masters A.F. // Aust. J. Chem. 1986. V. 39. P. 1129.
  33. Шмидт Ф.К., Ткач В.С., Калабина А.В. // Нефтехимия. 1972. Т. 12. № 1. С. 76.
  34. Benvenuti F., Carlini C., Marchionna M., Patrini R., Galletti A.M.R., Sbrana G. // Appl. Catal. А: Gen. 2000. V. 199. № 1. P. 123.
  35. Bariashir C., Huang C., Solan G.A., Sun W.H. // Coord. Chem. Rev. 2019. V. 385. P. 208.
  36. Agapie T. // Coord. Chem. Rev. 2011. V. 255. № 7–8. P. 861.
  37. Alferov K.A., Belov G.P., Meng Y. // Appl. Catal. А: Gen. 2017. V. 542. P. 71.
  38. McGuinness D.S., Wasserscheid P., Keim W., Morgan D., Dixon J.T., Bollmann A., Maumela H., Hess F., Englert U. // J. Am. Chem. Soc. 2003. V. 125. № 18. P. 5272.
  39. Bahri-laleh N., Nekoomanesh-haghighi M., Sadjadi S. // Polyolefins J. 2016. V. 3. № 1. P. 11.
  40. Bezborodov V., Babenko I., Rozentsveig I., Korchevin N., Levanova E., Smirnov V., Borodina T., Saraev V., Vilms A. // Polyhedron. 2018. V. 151. P. 287.
  41. Murray S.G., Hartley F.R. // Chem. Rev. 1981. V. 81. № 4. P. 365.
  42. Lucas C.R., Liu S., Bridson J.N. // Can. J. Chem. 1995. V. 73. № 7. P. 1023.
  43. Lucas C.R., Byrne J.M.D., Collins J.L., Dawe L.N., Miller D.O. // Can. J. Chem. 2011. V. 89. № 10. P. 1174.
  44. Liang W., Liu S., Lucas C.R., Miller D.O. // Polyhedron. 1998. V. 17. № 8. P. 1323.
  45. Grant G.J., Jones M.W., Loveday K.D., VanDerveer D.G., Pennington W.T., Eagle C.T., Mehne L.F. // Inorg. Chim. Acta. 2000. V. 300–302. P. 250.
  46. Arca M., Blake A.J., Casabò J., Demartin F., Devillanova F.A., Garau A., Isaia F., Lippolis V., Kivekas R., Muns V., Schröder M., Verani G. // J. Chem. Soc. Dalton Trans. 2001. № 8. P. 1180.
  47. Suslov D.S., Abramov Z.D., Babenko I.A., Bezborodov V.A., Borodina T.N., Bykov M.V., Pakhomova M.V., Smirnov V.I., Suchkova A.V., Ratovskii G.V., Ushakov I.A., Vilms A.I. // Appl. Organomet. Chem. 2021. V. 35. № 11. Art. e6381.
  48. Bullen G.J., Mason R., Pauling P. // Inorg. Chem. 1965. V. 4. № 4. P. 456.
  49. Lennartson A., Christensen L.U., McKenzie C.J., Nielsen U.G. // Inorg. Chem. 2014. V. 53. № 1. P. 399.
  50. Ren Y., Liu H., Yao X., Liu M. // J. Chromatogr. A. 2007. V. 1155. № 1. P. 105.
  51. Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339.
  52. Sheldrick G.M. // Acta Crystallogr. A. 2008. V. 64. № 1. P. 112.
  53. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3.
  54. Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  55. Neese F., Wennmohs F., Becker U., Riplinger C. // J. Chem. Phys. 2020. V. 152. № 22. Art. 224108.
  56. Neese F. // Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012. V. 2. № 1. P. 73.
  57. Perdew J.P. // Phys. Rev. B. 1986. V. 33. № 12. P. 8822.
  58. Becke A.D. // Phys. Rev. A. 1988. V. 38. № 6. P. 3098.
  59. Eichkorn K., Treutler O., Öhm H., Häser M., Ahlrichs R. // Chem. Phys. Lett. 1995. V. 240. № 4. P. 283.
  60. Grimme S., Antony J., Ehrlich S., Krieg H. // J. Chem. Phys. 2010. V. 132. № 15. Art. 154104.
  61. Grimme S., Ehrlich S., Goerigk L. // J. Comput. Chem. 2011. V. 32. № 7. P. 1456.
  62. Weigend F. // Phys. Chem. Chem. Phys. 2006. V. 8. № 9. P. 1057.
  63. Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. V. 7. № 18. P. 3297.
  64. Bursch M., Mewes J., Hansen A., Grimme S. // Angew. Chem. Int. Ed. 2022. V. 61. № 42. Art. e202205735.
  65. Bühl M., Kabrede H. // J. Chem. Theory Comput. 2006. V. 2. P. 1282.
  66. Bühl M., Reimann C., Pantazis D.A., Bredow T., Neese F. // J. Chem. Theory Comput. 2008. V. 4. № 9. P. 1449.
  67. Cramer C.J., Truhlar D.G. // Phys. Chem. Chem. Phys. 2009. V. 11. № 46. P. 10757.
  68. Waller M., Braun H., Hojdis N., Bühl M. // J. Chem. Theory Comput. 2007. V. 3. P. 2234.
  69. Szabo M.J., Jordan R.F., Michalak A., Piers W.E., Weiss T., Yang S.-Y., Ziegler T. // Organometallics. 2004. V. 23. № 23. P. 5565.
  70. Tobisch S., Ziegler T. // J. Am. Chem. Soc. 2004. V. 126. № 29. P. 9059.
  71. Cordero B., Gómez V., Platero-Prats A.E., Revés M., Echeverría J., Cremades E., Barragán F., Alvarez S. // Dalton Trans. 2008. № 21. P. 2832.
  72. Hill N.L., Hope H. // Inorg. Chem. 1974. V. 13. № 9. P. 2079.
  73. Saunders N.J., Barling J., Harvey J., Halliday A.N. // Geochim. Cosmochim. Acta. 2020. V. 285. P. 129.
  74. Assoumatine T., Stoeckli-Evans H. // Acta Crystallogr. Sect. E. Struct. Rep. Online. 2001. V. 57. № 5. P. m179.
  75. Rouf S.A., Jakobsen V.B., Mareš J., Jensen N.D., McKenzie C.J., Vaara J., Nielsen U.G. // Solid State Nucl. Magn. Reson. 2017. V. 87. P. 29.
  76. Johnston D.H., Shriver D.F. // Inorg. Chem. 1993. V. 32. № 6. P. 1045.
  77. Winston M.S., Oblad P.F., Labinger J.A., Bercaw J.E. // Angew. Chem. Int. Ed. Engl. 2012. V. 51. № 39. P. 9822.
  78. Eichmann M., Keim W., Haumann M., Melcher B.U., Wasserscheid P. // J. Mol. Catal. Chem. 2009. V. 314. № 1–2. P. 42.
  79. Mitkova M., Tomov A., Kurtev K. // J. Mol. Catal. Chem. 1996. V. 110. № 1. P. 25.
  80. Nomura K., Itagaki M., Ishino M., Yamamoto M., Suzukamo G. // Catal. Lett. 1997. V. 47. № 1. P. 47.
  81. Sato H., Tojima H. // Bull. Chem. Soc. Jpn. 1993. V. 66. № 10. P. 3079.
  82. Титова Ю.Ю., Шмидт Ф.К. // Кинетика и катализ. 2017. Т. 58. № 6. С. 735. (Titova Y.Y., Shmidt F.K. // Kinet. Catal. 2017. V. 58. № 6. P. 749.)
  83. URL: https://www.equilex.com/ru/products/propylene-trimer-nonene-2 (accessed: 02.08.2024).
  84. Martens J.A., Verrelst W.H., Mathys G.M., Brown S.H., Jacobs P.A. // Angew. Chem. Int. Ed. 2005. V. 44. № 35. P. 5687.
  85. Попов В.Г., Юдина А.В. Патент РФ № 2200725C1, 2003.
  86. Бусыгин В.М., Гильманов Х.Х., Мальцев Л.В., Гильмутдинов Н.Р., Зиятдинов А.Ш., Хисаев Р.Ш., Софронова О.В., Назмиева И.Ф., Галимов Р.Х., Шакиров Ш.К., Габделахатов Ф.Р., Амирова Н.Т. Патент РФ № 2255081C1, 2005.
  87. URL: https://www.fishersci.com/shop/products/1-2-dichloroethane-99-8-extra-dry-acroseal-thermo-scientific/AC326840010 (accessed: 29.07.2024).
  88. Siergiejczyk L., Bclesławski M. // Polim. – Tworzywa Wielkocząsteczkowe. 1986. V. 10. P. 395.
  89. Pasynkiewicz S. // Polyhedron. 1990. V. 9. № 2–3. P. 429.
  90. Петрова В.Д., Ржевская Н.Н., Щербакова Н.В., Сангалов Ю.А., Минскер К.С. // Докл. АН СССР. 1977. Т. 233. № 4. С. 602.
  91. Петрова В.Д., Ржевская Н.Н., Щербакова Н.В., Сангалов Ю.А., Минскер К.С. // Изв. АН СССР. Серия химическая. 1978. № 6. С. 1373. (Petrova V.D., Rzhevskaya N.N., Shcherbakova N.V., Sangalov Yu.A., Minsker K.S. // Russ. Chem. Bull. 1978. V. 27. № 6. P. 1194.)
  92. Soshnikov I.E., Semikolenova N.V., Bryliakov K.P., Antonov A.A., Sun W.-H., Talsi E.P. // J. Organomet. Chem. 2020. V. 907. Art. 121063.
  93. Шмидт Ф.К., Титова Ю.Ю., Белых Л.Б. // Кинетика и катализ. 2016. Т. 57. № 1. С. 63–73. (Shmidt F.K., Titova Yu.Yu., Belykh L.B. // Kinet. Catal. 2016. V. 57. № 1. P. 61.)
  94. Bryliakov K.P., Talsi E.P. // Coord. Chem. Rev. 2012. V. 256. № 23–24. P. 2994.
  95. Титова Ю.Ю., Шмидт Ф.К. // Кинетика и катализ. 2017. Т. 58. № 6. С. 735–742. (для англ. версии: Titova Y.Y., Shmidt F.K. // Kinet. Catal. 2017. V. 58. № 6. P. 749.)
  96. Nesmeyanov A.N., Isaeva L.S., Morozova L.N., Petrovskii P.V., Tumanskii B.L., Lokshin B.V., Klemenkova Z.S. // Inorg. Chim. Acta. 1980. V. 43. P. 1.
  97. Nesmeyanov A.N., Isaeva L.S., Lorens L.N. // J. Organomet. Chem. 1977. V. 129. № 3. P. 421.
  98. Sun P., Yang D., Li Y., Zhang Y., Su L., Wang B., Qu J. // Organometallics. 2016. V. 35. № 5. P. 751.

补充文件

附件文件
动作
1. JATS XML
2. Scheme 1. Synthesis scheme, numbering of ligands and corresponding bromide complexes of nickel(II).

下载 (103KB)
3. Scheme 2. Synthesis scheme, numbering of ligands and corresponding acetylacetonate complexes of nickel(II).

下载 (127KB)
4. Scheme 3. Synthesis routes for propylene dimers in the presence of hydride-type cationic nickel catalysts, with the anion omitted.

下载 (201KB)
5. Scheme 4. Proposed routes of interaction of Ib–VIb and Ic–VIIIc complexes with organoaluminium compounds leading to catalytically active complexes (L – oxadithioester ligand, OAO – oligoalumoxane).

下载 (184KB)
6. Fig. 1. The molecular structure of the IIb*MeCN complex according to X-ray diffraction data, thermal ellipsoids of 50% probability.

下载 (140KB)
7. Fig. 2. Possible isomers for IIb in a DMSO solution with a “meridional” (a) or “fascial" (b) arrangement of SOS atoms of the oxadithioester ligand; L is the DMSO molecule; for IIb molecules with S = 0, DMSO dissociation from the transition metal coordination sphere is observed; ΔG°298 estimated from DFT data using a discrete-continuum solvent model (BP86-D3/def2-TZVP, CPCM).

下载 (588KB)
8. 3. IR spectra of: 1 – IVb complex (tablet, KBr), 2 – free IVa ligand (thin film, KBr).

下载 (219KB)
9. Fig. 4. Molecular structure of complex IX according to X-ray diffraction data, thermal ellipsoids of 50% probability.

下载 (90KB)
10. 5. 1H NMR spectrum of the IIc complex (solvent – DMSO-d6).

下载 (89KB)
11. Fig. 6. Dependence of TOF on reaction time: a – for catalytic systems of the composition: IIIc/300Al(i-Bu)2Cl(1), Vc/300Al(i-Bu)2Cl(2), VIIc/300Al(i-Bu)2Cl(4), VIIIc/300Al(i-Bu)2Cl(4); b – for the Vc/300Al catalytic system(i-Bu)2Cl/nH2O, the (H2O) promoter was introduced 2 minutes after the introduction of Al(i-Bu)2Cl, the ratio [H2O]0 : [Ni]0 is 10 (1), 25 (2), 40 (3), 70 (4) ( on the tab A diagram is shown illustrating the dependence of TON on the amount of added promoter to the reaction mixture). Reaction conditions: n(Ni) = 4 mmol, T = 25 °C, solvent – 1,2-dichloroethane (V0 = 10 ml). The TOF is calculated based on propylene absorption data measured by an automatic flow meter.

下载 (195KB)