Трансформация состояний плюрипотентности в ходе морфогенеза эпибласта мыши и человека
- Авторы: Абдыев В.К.1, Алпеева Е.В.1, Калистратова Е.Н.2, Воротеляк Е.А.1, Васильев А.В.1,2
-
Учреждения:
- Институт биологии развития им. Н.К. Кольцова РАН
- Московский государственный университет им. М.В. Ломоносова, биологический факультет
- Выпуск: Том 54, № 5 (2023)
- Страницы: 306-322
- Раздел: ОБЗОРЫ
- URL: https://permmedjournal.ru/0475-1450/article/view/669918
- DOI: https://doi.org/10.31857/S0475145023050026
- EDN: https://elibrary.ru/KJFGAE
- ID: 669918
Цитировать
Аннотация
Плюрипотентный статус клетки in vivo имеет пространственно-временную регуляцию в рамках эмбриогенеза и обусловлен процессами самообновления, бесконечной пролиферации и дифференцировки во все типы клеток организма. Статус плюрипотентности был охарактеризован при исследовании клеток тератокарциномы, а затем это понятие было применено к эмбриональным клеткам преимплантационного эмбриона мыши. Плюрипотентные стволовые клетки (ПСК) мыши и человека образуются в преимплантационный период и присутствуют у эмбриона до начала гаструляции. Одно из основных событий раннего развития млекопитающих – разделение внутренней клеточной массы бластоцисты (ВКМ) на гипобласт и эпибласт, который дает начало собственно эмбриону. В ходе морфогенетических процессов, связанных с формированием эпибласта, состояния плюрипотентности его клеток трансформируются. Таким образом, клетки ВКМ бластоцисты эпигенетическим и транскрипционным паттернами отличаются от своих дочерних клеток пери/постимплантационного эпибласта. С началом гаструляционных движений созревание клеток эпибласта завершается их дифференцировкой в клетки трех зародышевых листков. В данном обзоре рассмотрены исторические аспекты изучения плюрипотентности клеток, различные источники ПСК, механизмы и сигнальные пути, поддерживающие самообновление и плюрипотентность клеток в культурах ПСК. Кроме того, мы обобщили данные о морфогенетических процессах, которые влияют на образование наивных клеток ВКМ in vivo и последующее созревание клеток эпибласта мыши и человека, связанное с трансформацией их состояний плюрипотентности.
Об авторах
В. К. Абдыев
Институт биологии развития им. Н.К. Кольцова РАН
Автор, ответственный за переписку.
Email: mailtovepa@gmail.com
Россия, 119334, Москва, ул. Вавилова 26
Е. В. Алпеева
Институт биологии развития им. Н.К. Кольцова РАН
Email: mailtovepa@gmail.com
Россия, 119334, Москва, ул. Вавилова 26
Е. Н. Калистратова
Московский государственный университет им. М.В. Ломоносова,биологический факультет
Email: mailtovepa@gmail.com
Россия, 119234, Москва, ул. Ленинские горы, д. 1, стр. 12
Е. А. Воротеляк
Институт биологии развития им. Н.К. Кольцова РАН
Email: mailtovepa@gmail.com
Россия, 119334, Москва, ул. Вавилова 26
А. В. Васильев
Институт биологии развития им. Н.К. Кольцова РАН; Московский государственный университет им. М.В. Ломоносова,биологический факультет
Email: mailtovepa@gmail.com
Россия, 119334, Москва, ул. Вавилова 26; Россия, 119234, Москва, ул. Ленинские горы, д. 1, стр. 12
Список литературы
- Абдыев В.К. и др. Современные технологии получения первичных половых клеток человека in vitro // Биохимия. 2019. Т. 84. № 3. С. 330–342.
- Гордеев М.Н., Бахмет Е.И., Томилин А.Н. Динамика плюрипотентности в эмбриогенезе и в культуре // Онтогенез. 2021. Т. 52. № 6. С. 429–440.
- Мучкаева И.А. и др. Молекулярные механизмы индуцированной плюрипотентности // 2012. Т. 1. № 12. С. 32–43.
- Честков И.В. и др. Молекулярные барьеры в процессах генетического репрограммирования и трансформации клеток // 2014. С. 1592–1604.
- Abdyyev V.K. et al. In vitro derived female hPGCLCs are unable to complete meiosis in embryoid bodies // Exp. Cell Res. 2020. V. 397. № 2. P. 112358.
- Andrews P.W. From teratocarcinomas to embryonic stem cells // Philos. Trans. R. Soc. London. Ser. B. Biol. Sci. 2002. V. 357. № 1420. P. 405–417.
- Arnold S.J. et al. Dose-dependent Smad1, Smad5 and Smad8 signaling in the early mouse embryo // Dev. Biol. 2006. V. 296. № 1. P. 104–118.
- Banito A., Gil J. Induced pluripotent stem cells and senescence: learning the biology to improve the technology // EMBO Rep. 2010. V. 11. № 5. P. 353–9.
- Bartoccetti M. и дp. Regulatory Dynamics of Tet1 and Oct4 Resolve Stages of Global DNA Demethylation and Transcriptomic Changes in Reprogramming // Cell Rep. 2020. V. 30. № 7.
- Bayerl J. et al. Principles of signaling pathway modulation for enhancing human naive pluripotency induction // Cell Stem Cell. 2021. V. 28. № 9. P. 1549-1565.e12.
- Bedzhov I., Zernicka-Goetz M. Self-Organizing Properties of Mouse Pluripotent Cells Initiate Morphogenesis upon Implantation // Cell. 2014. V. 156. P. 1032–1044.
- Blakeley P. et al. Defining the three cell lineages of the human blastocyst by single-cell RNA-seq // Dev. 2015. V. 142. № 18. P. 3151–3165.
- Blasco M.A. The epigenetic regulation of mammalian telomeres // Nat. Rev. Genet. 2007. V. 84. 2007. V. 8. № 4. P. 299–309.
- Bourillot P.Y. et al. Novel STAT3 target genes exert distinct roles in the inhibition of mesoderm and endoderm differentiation in cooperation with Nanog // Stem Cells. 2009. V. 27. № 8. P. 1760–1771.
- Bradley A. et al. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines // Nat. 1984 3095965. 1984. V. 309. № 5965. P. 255–256.
- Brons I.G.M. et al. Derivation of pluripotent epiblast stem cells from mammalian embryos // Nat. 2007 4487150. 2007a. V. 448. № 7150. P. 191–195.
- Brons I.G.M. et al. Derivation of pluripotent epiblast stem cells from mammalian embryos // Nature. 2007b. V. 448. № 7150. P. 191–195.
- Burdon T. et al. Suppression of SHP-2 and ERK Signalling Promotes Self-Renewal of Mouse Embryonic Stem Cells // Dev. Biol. 1999. V. 210. № 1. P. 30–43.
- Carey B.W. et al. Reprogramming of murine and human somatic cells using a single polycistronic vector // Proc. Natl. Acad. Sci. USA. 2009. V. 106. № 1. P. 157–162.
- Chambers I., Smith A. Self-renewal of teratocarcinoma and embryonic stem cells // Oncogene. 2004. V. 23. № 43 REV. ISS. 6. P. 7150–7160.
- Cheng S. et al. Single-Cell RNA-Seq Reveals Cellular Heterogeneity of Pluripotency Transition and X Chromosome Dynamics during Early Mouse Development // Cell Rep. 2019. V. 26. № 10. P. 2593–2607.e3.
- Christodoulou N. et al. Sequential formation and resolution of multiple rosettes drive embryo remodelling after implantation // Nat. Cell Biol. 2018. 2011. 2018. V. 20. № 11. P. 1278–1289.
- Coucouvanis E., Martin G.R. BMP signaling plays a role in visceral endoderm differentiation and cavitation in the early mouse embryo // Development. 1999. V. 126. № 3. P. 535–546.
- Damjanov I. Teratocarcinoma: neoplastic lessons about normal embryogenesis // Int. J. Dev. Biol. 1993. V. 37. № 1. P. 39–46.
- Damjanov I., Andrews P.W. Pluripotent human stem cells: Standing on the shoulders of giants // Int. J. Dev. Biol. 2016. V. 60. № 10-11–12. P. 321–325.
- Dan J. et al. Zscan4 Inhibits Maintenance DNA Methylation to Facilitate Telomere Elongation in Mouse Embryonic Stem Cells // Cell Rep. 2017. V. 20. № 8. P. 1936–1949.
- Deglincerti A. et al. Self-organization of the in vitro attached human embryo // Nat. 2016 5337602. 2016. V. 533. № 7602. P. 251–254.
- Dokmegang J. Modeling Epiblast Shape in Implanting Mammalian Embryos // Methods Mol. Biol. 2022. V. 2490. P. 281–296.
- Ducibella T., Anderson E. Cell shape and membrane changes in the eight-cell mouse embryo: Prerequisites for morphogenesis of the blastocyst // Dev. Biol. 1975. V. 47. № 1. P. 45–58.
- Evans M.J., Kaufman M.H. Establishment in culture of pluripotential cells from mouse embryos // Nat. 1981 2925819. 1981. V. 292. № 5819. P. 154–156.
- Falco G. et al. Zscan4: A novel gene expressed exclusively in late 2-cell embryos and embryonic stem cells // Dev. Biol. 2007. V. 307. № 2. P. 539–550.
- Finch B.W., Ephrussi B. Retention of multiple developmental potentialities by cells of a mouse testicular teratocarcinoma during prolonged culture in vitro and their extinction upon hybridization with cells of permanent lines // Proc. Natl. Acad. Sci. 1967. V. 57. № 3. P. 615–621.
- Gao R. et al. Inhibition of Aberrant DNA Re-methylation Improves Post-implantation Development of Somatic Cell Nuclear Transfer Embryos // Cell Stem Cell. 2018. V. 23. № 3. P. 426–435.e5.
- Gardner R.L., Rossant J. Investigation of the fate of 4–5 day post-coitum mouse inner cell mass cells by blastocyst injection // Development. 1979. V. 52. № 1. P. 141–152.
- Gharibi B. et al. A FGF2-mediated incoherent feedforward loop induces Erk inhibition and promotes naïve pluripotency // bioRxiv. 2020. P. 2020.11.11.378869.
- Gough N.M. et al. LIF: a molecule with divergent actions on myeloid leukaemic cells and embryonic stem cells // Reprod. Fertil. Dev. 1989. V. 1. № 4. P. 281–288.
- Graham S.J.L. et al. BMP signalling regulates the pre-implantation development of extra-embryonic cell lineages in the mouse embryo // Nat. Commun. 2014 51. 2014. V. 5. № 1. P. 1–11.
- Gurdon J.B. Adult frogs derived from the nuclei of single somatic cells // Dev. Biol. 1962a. V. 4. № 2. P. 256–273.
- Gurdon J.B. The Developmental Capacity of Nuclei taken from Intestinal Epithelium Cells of Feeding Tadpoles // Development. 1962b. V. 10. № 4. P. 622–640.
- Gurdon J.B. From Nuclear Transfer to Nuclear Reprogramming: The Reversal of Cell Differentiation // 2006. V. 22. P. 1–22.https://doi.org/10.1146/annurev.cellbio.22.090805.140144
- Haegel H. et al. Lack of beta-catenin affects mouse development at gastrulation // Development. 1995. V. 121. № 11. P. 3529–3537.
- Hanna J. et al. Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs // Proc. Natl. Acad. Sci. 2010. V. 107. № 20. P. 9222–9227.
- Harwood B.N. et al. Members of the WNT signaling pathways are widely expressed in mouse ovaries, oocytes, and cleavage stage embryos // Dev. Dyn. 2008. V. 237. № 4. P. 1099–1111.
- Hayashi K. et al. Dynamic Equilibrium and Heterogeneity of Mouse Pluripotent Stem Cells with Distinct Functional and Epigenetic States // Cell Stem Cell. 2008. V. 3. № 4. P. 391–401.
- Heidari Khoei H. et al. Generating human blastoids modeling blastocyst-stage embryos and implantation // Nat. Protoc. 2023.
- Hertig A.T., Rock J., Adams E.C. A description of 34 human ova within the first 17 days of development // Am. J. Anat. 1956. V. 98. № 3. P. 435–493.
- Hirschi K.K., Li S., Roy K. Induced Pluripotent Stem Cells for Regenerative Medicine // Annu. Rev. Biomed. Eng. 2014. V. 16. № 1. P. 277–294.
- Ho L. et al. An embryonic stem cell chromatin remodeling complex, esBAF, is an essential component of the core pluripotency transcriptional network // Proc. Natl. Acad. Sci. USA. 2009. V. 106. № 13. P. 5187–5191.
- Hoogland S.H.A., Marks H. Developments in pluripotency: a new formative state // Cell Res. 2021. V. 31. № 5. P. 493–494.
- Huang Y. et al. In Vivo Differentiation Potential of Epiblast Stem Cells Revealed by Chimeric Embryo Formation // Cell Rep. 2012. V. 2. № 6. P. 1571–1578.
- Huelsken J. et al. Requirement for β-Catenin in Anterior-Posterior Axis Formation in Mice // J. Cell Biol. 2000. V. 148. № 3. P. 567–578.
- Ishitani T. et al. The TAK1–NLK–MAPK-related pathway antagonizes signalling between β-catenin and transcription factor TCF // Nat. 1999 3996738. 1999. V. 399. № 6738. P. 798–802.
- Ishitani T., Ninomiya-Tsuji J., Matsumoto K. Regulation of Lymphoid Enhancer Factor 1/T-Cell Factor by Mitogen-Activated Protein Kinase-Related Nemo-Like Kinase-Dependent Phosphorylation in Wnt/β-Catenin Signaling // Mol. Cell. Biol. 2003. V. 23. № 4. P. 1379–1389.
- Johnson M.H., Ziomek C.A. The foundation of two distinct cell lineages within the mouse morula // Cell. 1981. V. 24. № 1. P. 71–80.
- Kang M., Garg V., Hadjantonakis A.K. Lineage Establishment and Progression within the Inner Cell Mass of the Mouse Blastocyst Requires FGFR1 and FGFR2 // Dev. Cell. 2017. V. 41. № 5. P. 496–510.e5.
- Kemler R. From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion // Trends Genet. 1993. V. 9. № 9. P. 317–321.
- Khoo T.S. et al. Retention of Somatic Memory Associated with Cell Identity, Age and Metabolism in Induced Pluripotent Stem (iPS) Cells Reprogramming // Stem Cell Rev. Reports. 2020. V. 16. № 2. P. 251–261.
- Kinoshita M. et al. Capture of Mouse and Human Stem Cells with Features of Formative Pluripotency // Cell Stem Cell. 2021. V. 28. № 3. P. 453–471.e8.
- Kinoshita M., Smith A. Pluripotency Deconstructed // Dev. Growth Differ. 2018. V. 60. № 1. P. 44–52.
- Kojima Y. et al. The Transcriptional and Functional Properties of Mouse Epiblast Stem Cells Resemble the Anterior Primitive Streak // Cell Stem Cell. 2014. V. 14. № 1. P. 107–120.
- Korotkevich E. et al. The Apical Domain Is Required and Sufficient for the First Lineage Segregation in the Mouse Embryo // Dev. Cell. 2017. V. 40. № 3. P. 235–247.e7.
- Kuan I. et al. EpEX/EpCAM and Oct4 or Klf4 alone are sufficient to generate induced pluripotent stem cells through STAT3 and HIF2α OPEN // 2017.
- Kunath T. et al. FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment // Development. 2007. V. 134. № 16. P. 2895–2902.
- Kurimoto K. et al. Complex genome-wide transcription dynamics orchestrated by Blimp1 for the specification of the germ cell lineage in mice // Genes Dev. 2008. V. 22. № 12. P. 1617–1635.
- Le R. et al. Dcaf11 activates Zscan4-mediated alternative telomere lengthening in early embryos and embryonic stem cells // Cell Stem Cell. 2021. V. 28. № 4. P. 732–747.e9.
- Li M. et al. A cut above the rest: Targeted genome editing technologies in human pluripotent stem cells // J. Biol. Chem. 2014. V. 289. № 8. P. 4594–4599.
- Li M., Belmonte J.C.I. Ground rules of the pluripotency gene regulatory network // Nat. Rev. Genet. 2017 183. 2017. V. 18. № 3. P. 180–191.
- Lim H.Y.G. et al. Keratins are asymmetrically inherited fate determinants in the mammalian embryo // Nat. 2020 5857825. 2020. V. 585. № 7825. P. 404–409.
- Lim H.Y.G., Plachta N. Cytoskeletal control of early mammalian development // Nat. Rev. Mol. Cell Biol. 2021 228. 2021. V. 22. № 8. P. 548–562.
- Liu G. et al. Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications // Stem Cell Rev. Reports. 2020. V. 16. № 1.
- Liu Z. et al. Cloning of Macaque Monkeys by Somatic Cell Nuclear Transfer // Cell. 2018. V. 172. № 4. P. 881–887.e7.
- Lloyd S., Fleming T.P., Collins J.E. Expression of Wnt genes during mouse preimplantation development // Gene Expr. Patterns. 2003. V. 3. № 3. P. 309–312.
- Lyashenko N. et al. Differential requirement for the dual functions of β-catenin in embryonic stem cell self-renewal and germ layer formation // Nat. Cell Biol. 2011 137. 2011. V. 13. № 7. P. 753–761.
- Martello G. et al. Esrrb Is a Pivotal Target of the Gsk3/Tcf3 Axis Regulating Embryonic Stem Cell Self-Renewal // Cell Stem Cell. 2012. V. 11. № 4. P. 491–504.
- Martin G.R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. // Proc. Natl. Acad. Sci. 1981. V. 78. № 12. P. 7634–7638.
- Masaki H. et al. Inhibition of Apoptosis Overcomes Stage-Related Compatibility Barriers to Chimera Formation in Mouse Embryos // Cell Stem Cell. 2016. V. 19. № 5. P. 587–592.
- Meharwade T. et al. Cross-activation of the FGF, TGF-β and WNT pathways constrains BMP4-mediated induction of the Totipotent state in mouse embryonic stem cells // bioRxiv. 2022. P. 2022.04.15.488509.
- Mishina Y. et al. Bmpr encodes a type I bone morphogenetic protein receptor that is essential for gastrulation during mouse embryogenesis. // Genes Dev. 1995. V. 9. № 24. P. 3027–3037.
- Mohamed O.A., Clarke H.J., Dufort D. β-catenin signaling marks the prospective site of primitive streak formation in the mouse embryo // Dev. Dyn. 2004. V. 231. № 2. P. 416–424.
- Molè M.A. et al. Integrin β1 coordinates survival and morphogenesis of the embryonic lineage upon implantation and pluripotency transition // Cell Rep. 2021. V. 34. № 10. P. 108834.
- Molotkov A. et al. Distinct Requirements for FGFR1 and FGFR2 in Primitive Endoderm Development and Exit from Pluripotency // Dev. Cell. 2017. V. 41. № 5. P. 511–526.e4.
- Morata Tarifa C. et al. Chimeras for the twenty-first century // Crit. Rev. Biotechnol. 2020. V. 40. № 3. P. 283–291.
- Mossahebi-Mohammadi M. et al. FGF Signaling Pathway: A Key Regulator of Stem Cell Pluripotency // Front. Cell Dev. Biol. 2020. V. 8. P. 79.
- Muhr J., Ackerman K.M. Embryology, Gastrulation. StatPearls Publishing. 2022.
- Murray P., Edgar D. Regulation of Programmed Cell Death by Basement Membranes in Embryonic Development // J. Cell Biol. 2000. V. 150. № 5. P. 1215–1221.
- Neagu A. et al. In vitro capture and characterization of embryonic rosette-stage pluripotency between naive and primed states // Nat. Cell Biol. 2020 225. 2020. V. 22. № 5. P. 534–545.
- Neavin D. et al. Single cell eQTL analysis identifies cell type-specific genetic control of gene expression in fibroblasts and reprogrammed induced pluripotent stem cells // Genome Biol. 2021. V. 22. № 1. P. 1–19.
- Nichols J. et al. Formation of pluripotent stem cells in the mammalian embryo dependes on the POU transcription factor Oct4 // Cell. 1998. V. 95. № 3. P. 379–391.
- Nichols J., Gardner R.L. Heterogeneous differentiation of external cells in individual isolated early mouse inner cell masses in culture // Development. 1984. V. 80. № 1. P. 225–240.
- Niwa H. et al. A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells // Nat. 2009 4607251. 2009. V. 460. № 7251. P. 118–122.
- Ohtsuka S., Nakai-Futatsugi Y., Niwa H. LIF signal in mouse embryonic stem cells // JAK-STAT. 2015. V. 4. № 2. P. 1–9.
- Okae H. et al. Derivation of Human Trophoblast Stem Cells // Cell Stem Cell. 2018. V. 22. № 1. P. 50- 63.e6.
- Okano M. et al. DNA Methyltransferases Dnmt3a and Dnmt3b Are Essential for De Novo Methylation and Mammalian Development // Cell. 1999. V. 99. № 3. P. 247–257.
- Okita K., Yamanaka S. Induced pluripotent stem cells: opportunities and challenges. // Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2011. V. 366. № 1575. P. 2198–207.
- Oshima R.G. et al. Intermediate filament protein synthesis in preimplantation murine embryos // Dev. Biol. 1983. V. 99. № 2. P. 447–455.
- Pachnis V., Mankoo B., Costantini F. Expression of the c-ret proto-oncogene during mouse embryogenesis // Development. 1993. V. 119. № 4.
- Papaioannou V.E., Gardner R.L., McBurney M.W. Participation of cultured teratocarcinoma cells in mouse embryogenesis // J. Embryol. Exp. Morphol. 1978. V. 44.
- Pauken C.M., Capco D.G. Regulation of cell adhesion during embryonic compaction of mammalian embryos: Roles for PKC and ?-catenin // Mol. Reprod. Dev. 1999. V. 54. № 2. P. 135–144.
- Pierce G.B. Teratocarcinoma // Cancer Markers. Totowa, NJ: Humana Press, 1980. P. 1–36.
- Pierce G.B. The cancer cell and its control by the embryo. Rous-Whipple Award lecture. // Am. J. Pathol. 1983. V. 113. № 1. P. 117.
- Qiu D. et al. Klf2 and Tfcp2l1, Two Wnt/β-Catenin Targets, Act Synergistically to Induce and Maintain Naive Pluripotency // Stem Cell Reports. 2015. V. 5. № 3. P. 314–322.
- Raz R. et al. Essential role of STAT3 for embryonic stem cell pluripotency // Proc. Natl. Acad. Sci. USA. 1999. V. 96. № 6. P. 2846–2851.
- Reiner J.M. Organisers and Genes. By C.H. Waddington. 1940. Cambridge: at The University Press; N.Y.: The Macmillan Company // Philos. Sci. 1941. V. 8. № 3.
- Reyes de Mochel N.S. et al. BMP signaling is required for cell cleavage in preimplantation-mouse embryos // Dev. Biol. 2015. V. 397. № 1. P. 45–55.
- Rivera-Pérez J.A., Magnuson T. Primitive streak formation in mice is preceded by localized activation of Brachyury and Wnt3 // Dev. Biol. 2005. V. 288. № 2. P. 363–371.
- Rodda D.J. et al. Transcriptional regulation of Nanog by OCT4 and SOX2 // J. Biol. Chem. 2005. V. 280. № 26.
- Saitou M., Yamaji M. Primordial Germ Cells in Mice // Cold Spring Harb. Perspect. Biol. 2012. V. 4. № 11. P. a008375–a008375.
- Sato N. et al. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor // Nat. Med. 2004 101. 2003. V. 10. № 1. P. 55–63.
- Schindler M. et al. Agarose microgel culture delineates lumenogenesis in naive and primed human pluripotent stem cells // Stem Cell Reports. 2021. V. 16. № 5. P. 1347–1362.
- Schoeftner S., Blasco M.A. A “higher order” of telomere regulation: telomere heterochromatin and telomeric RNAs // EMBO J. 2009. V. 28. № 16. P. 2323–2336.
- Seoane J., Le H. Van, Massagué J. Myc suppression of the p21Cip1 Cdk inhibitor influences the outcome of the p53 response to DNA damage // Nature. 2002. V. 419. № 6908. P. 729–734.
- Shahbazi M.N. et al. Self-organization of the human embryo in the absence of maternal tissues // Nat. Cell Biol. 2016 186. 2016. V. 18. № 6. P. 700–708.
- Shahbazi M.N. et al. Pluripotent state transitions coordinate morphogenesis in mouse and human embryos // Nat. 2017 5527684. 2017. V. 552. № 7684. P. 239–243.
- Shakiba N. et al. CD24 tracks divergent pluripotent states in mouse and human cells // Nat. Commun. 2015 61. 2015. V. 6. № 1. P. 1–11.
- Shao Y. et al. A pluripotent stem cell-based model for post-implantation human amniotic sac development // Nat. Commun. 2017 81. 2017. V. 8. № 1. P. 1–15.
- Shelby H., Shelby T., Wernig M. Somatic Lineage Reprogramming // Cold Spring Harb. Perspect. Biol. 2022. V. 14. № 10. P. a040808.
- Smith A. Formative pluripotency: the executive phase in a developmental continuum // Development. 2017. V. 144. № 3. P. 365–373.
- Smith A.G. et al. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides // Nature. 1988. V. 336. № 6200. P. 688–690.
- Sokol S.Y. Maintaining embryonic stem cell pluripotency with Wnt signaling // Development. 2011. V. 138. № 20. P. 4341–4350.
- Stadtfeld M. et al. A reprogrammable mouse strain from gene-targeted embryonic stem cells // Nat. Methods. 2010. V. 7. № 1. P. 53-55.
- Stadtfeld M., Hochedlinger K. Induced pluripotency: history, mechanisms, and applications // Genes Dev. 2010. V. 24. № 20. P. 2239–2263.
- Stavridis M.P. et al. A discrete period of FGF-induced Erk1/2 signalling is required for vertebrate neural specification // Development. 2007. V. 134. № 16. P. 2889–2894.
- Stevens L.C. The development of transplantable teratocarcinomas from intratesticular grafts of pre- and postimplantation mouse embryos // Dev. Biol. 1970a. V. 21. № 3. P. 364–382.
- Stevens L.C. Experimental Production of Testicular Teratomas in Mice of Strains 129, A/He, and Their F1 Hybrids // JNCI J. Natl. Cancer Inst. 1970b. V. 44. № 4. P. 923–929.
- Stevens L.C. Experimental Production of Testicular Teratomas in Mice // Proc. Natl. Acad. Sci. United States. 1964. V. 52. P. 654–661.
- Stevens L.C., Little C.C. Spontaneous Testicular Teratomas in an Inbred Strain of Mice // Proc. Natl. Acad. Sci. 1954. V. 40. № 11. P. 1080–1087.
- Storm M.P. et al. Regulation of nanog expression by phosphoinositide 3-kinase-dependent signaling in murine embryonic stem cells // J. Biol. Chem. 2007. V. 282. № 9. P. 6265–6273.
- Storm M.P. et al. Characterization of the Phosphoinositide 3-Kinase-Dependent Transcriptome in Murine Embryonic Stem Cells: Identification of Novel Regulators of Pluripotency // Stem Cells. 2009. V. 27. № 4. P. 764–775.
- Sugimoto M. et al. A Simple and Robust Method for Establishing Homogeneous Mouse Epiblast Stem Cell Lines by Wnt Inhibition // Stem Cell Reports. 2015. V. 4. № 4. P. 744–757.
- Tabar V., Studer L. Pluripotent stem cells in regenerative medicine: challenges and recent progress // Nat. Rev. Genet. 2014. V. 15. № 2. P. 82–92.
- Takahashi K. et al. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors // Cell. 2007. V. 131. № 5. P. 861–872.
- Takahashi K., Yamanaka S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors // Cell. 2006. V. 126. № 4. P. 663–676.
- Tam P.P., Loebel D.A., Tanaka S.S. Building the mouse gastrula: signals, asymmetry and lineages // Curr. Opin. Genet. Dev. 2006. V. 16. № 4. P. 419–425.
- Tanaka S.S. et al. IFITM/mil/fragilis family proteins IFITM1 and IFITM3 play distinct roles in mouse primordial germ cell homing and repulsion // Dev. Cell. 2005. V. 9. № 6. P. 745–756.
- Tang F. et al. Tracing the Derivation of Embryonic Stem Cells from the Inner Cell Mass by Single-Cell RNA-Seq Analysis // Cell Stem Cell. 2010. V. 6. № 5. P. 468–478.
- Taniguchi K. et al. Lumen Formation Is an Intrinsic Property of Isolated Human Pluripotent Stem Cells // Stem Cell Reports. 2015. V. 5. № 6. P. 954–962.
- Tesar P.J. et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells // Nat. 2007 4487150. 2007. V. 448. № 7150. P. 196–199.
- Theunissen T.W. et al. Systematic Identification of Culture Conditions for Induction and Maintenance of Naive Human Pluripotency // Cell Stem Cell. 2014. V. 15. № 4. P. 471–487.
- Thomson J.A. et al. Embryonic Stem Cell Lines Derived from Human Blastocysts // Science (80-.) . 1998. V. 282. № 5391. P. 1145–1147.
- Toyooka Y. et al. Identification and characterization of subpopulations in undifferentiated ES cell culture // Development. 2008. V. 135. № 5. P. 909–918.
- Toyooka Y. Trophoblast lineage specification in the mammalian preimplantation embryo // Reprod. Med. Biol. 2020. V. 19. № 3. P. 209–221.
- Vallier L., Alexander M., Pedersen R.A. Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells // J. Cell Sci. 2005. V. 118. № 19. P. 4495–4509.
- Veillard A.-C. et al. Stable Methylation at Promoters Distinguishes Epiblast Stem Cells from Embryonic Stem Cells and the In Vivo Epiblasts // Stem Cells Dev. 2014. V. 23. № 17. P. 2014–2029.
- Waddington C.H. The strategy of the genes. A discussion of some aspects of theoretical biology. With an appendix by H. Kacser. // Strateg. genes A Discuss. some some Asp. Theor. Biol. With an Append. by H. Kacser. 1957. V. 8. № 3.
- Wallingford M.C., Angelo J.R., Mager J. Morphogenetic analysis of peri-implantation development // Dev. Dyn. 2013. V. 242. № 9. P. 1110–1120.
- Wang X. et al. Epigenetic Reprogramming During Somatic Cell Nuclear Transfer: Recent Progress and Future Directions // Front. Genet. 2020. V. 11. № March. P. 1–13.
- Wang X. et al. Formative pluripotent stem cells show features of epiblast cells poised for gastrulation // Cell Res. 2021. V. 31. № 5. P. 526–541.
- Weberling A., Zernicka-Goetz M. Trophectoderm mechanics direct epiblast shape upon embryo implantation // Cell Rep. 2021. V. 34. № 3. P. 108655.
- Wernig M. et al. c-Myc Is Dispensable for Direct Reprogramming of Mouse Fibroblasts // Cell Stem Cell. 2008. V. 2. № 1. P. 10–12.
- Wilmut I. et al. Viable offspring derived from fetal and adult mammalian cells // Nat. 1997 3856619. 1997. V. 385. № 6619. P. 810–813.
- Wobus A.M. et al. Characterization of a pluripotent stem cell line derived from a mouse embryo // Exp. Cell Res. 1984. V. 152. № 1. P. 212–219.
- Yamamoto M. et al. Nodal antagonists regulate formation of the anteroposterior axis of the mouse embryo // Nat. 2004 4286981. 2004. V. 428. № 6981. P. 387–392.
- Yamanaka Y., Lanner F., Rossant J. FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst // Development. 2010. V. 137. № 5. P. 715–724.
- Yanagida A. et al. Naive stem cell blastocyst model captures human embryo lineage segregation // Cell Stem Cell. 2021. V. 28. № 6. P. 1016–1022.e4.
- Ye S. et al. Embryonic stem cell self-renewal pathways converge on the transcription factor Tfcp2l1 // EMBO J. 2013. V. 32. № 19. P. 2548–2560.
- Yeh C.Y. et al. Capturing Pluripotency and Beyond // Cells. 2021. V. 10. P. 3558. 2021. V. 10. № 12. P. 3558.
- Yu L. et al. Blastocyst-like structures generated from human pluripotent stem cells // Nat. 2021 5917851. 2021. V. 591. № 7851. P. 620–626.
- Zalzman M. et al. Zscan4 regulates telomere elongation and genomic stability in ES cells // Nat. 2010 4647290. 2010. V. 464. № 7290. P. 858–863.
- Zhou H. et al. Cell Stem Cell Brief Report Generation of Induced Pluripotent Stem Cells Using Recombinant Proteins // Stem Cell. V. 4. P. 381–384.
Дополнительные файлы
