Генеалогия нейронов: 50 лет реконструкции эволюции нервных систем

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

11 ноября ушел из жизни Дмитрий Антонович Сахаров (1930–2024), уникальный человек, наставник, ученый и поэт. В этом же году мировое сообщество отмечает 50-летие выхода в свет его книги “Генеалогия нейронов”, оказавшей громадное влияние на несколько поколений нейробиологов. Представленные в этой книге гипотезы, стратегии и экспериментальные подходы сохранили актуальность и сегодня. Мы представили гипотезы Сахарова о полигенезе и функциональном значении гетерохимизма нейронов в свете последних работ в области эволюционной нейробиологии, геномики и транскриптомики одиночных нейронов.

Полный текст

Доступ закрыт

Об авторах

Л. Л. Мороз

Университет Флориды

Автор, ответственный за переписку.
Email: leonidlmoroz@gmail.com
США, Флорида

В. Е. Дьяконова

Институт биологии развития им. Н. К. Кольцова РАН

Email: dyakonova.varvara@gmail.com
Россия, Москва, 119334, ул. Вавилова, 26

Список литературы

  1. Артемов Н.М., Сахаров Д.А. Хачатур Седракович Коштоянц. М.: Наука, 1986.
  2. Боровягин В.Л., Сахаров Д.А. Ультраструктура гигантских нейронов тритонии. Атлас. М.: Наука, 1968.
  3. Вагнер Н.П. Беспозвоночные Белого моря. Зоологические исследования, произведенные на берегах Соловецкого залива в летние месяцы 1876, 1877, 1879 и 1882 г. Николаем Вагнером Почетным Членом и Ординарным Профессором Императорского С.- Петербургского Университета. Типография М. М. Стасюлевича, Санкт-Петербург, 1885 г.
  4. Вепринцев Б.Н., Крастс И.В., Сахаров Д.А. Нервные клетки голожаберного моллюска Tritonia diomedia Bergh // Биофизика. 1964. Т. 9. С. 327–336.
  5. Коштоянц Х.С.. Основы сравнительной физиологии. Т. 2. Сравнительная физиология нервной системы. М.: Наука, 1957.
  6. Сахаров Д.А. Об автоматизме педальных ганглиев у крылоногого моллюска Clione limacina L. // Научн. докл. высш. школы (биол. науки). 1960. № 3. С. 60–62.
  7. Сахаров Д.А. Гигантские нервные клетки у голожаберных моллюсков Aeolidia papillosa и Dendronotus frondosus // Журн. общ. биол. 1962. Т. 23. С. 308–311.
  8. Сахаров Д.А. Основания к построению системы нервных клеток // Журнал общей биологии. 1970. Т. 31. N.4. С. 449–457.
  9. Сахаров Д.А. Почему нейроны разные? // Природа. 1972, № 10. С. 52–62.
  10. Сахаров Д.А. Генеалогия нейронов. 1974. М.: Наука.
  11. Сахаров Д.А. Синаптическая и бессинаптическая модели нейронной системы // Простые нервные системы. Ч. 2. 1985. Казань: КГУ, С. 78–80.
  12. Сахаров Д.А. Множественность нейротрансмиттеров: функциональное значение // Журнал эвoлюционной биoxимии и физиoлогии. 1990. Т. 26. № 5. С. 733–741.
  13. Сахаров Д.А. Нейронная основа мозговых функций: коннектом versus транскриптом // Когнитивная наука в Москве: новые исследования. М.: Буки-Веди, 2015. С. 395–400.
  14. Caxapoв Д.A., Kaбoтянcкий E.A. Интeгpaция пoвeдeния кpылoнoгoгo мoллюcкa дoфaминoм и cepoтoнинoм // Жypн. общ. биoлогии. 1986. Т. 47. № 2. С. 234–244.
  15. Alexeeva V., Borovikov D., Miller M.W., Rosen S.C., and Cropper E.C. Effect of a serotonergic extrinsic modulatory neuron (MCC) on radula mechanoafferent function in Aplysia // J. Neurophysiol. 1998. V. 80. P. 1609–1622. https://doi.org/ 10.1152/jn.1998.80.4.1609.
  16. Arendt D., Musser J.M., Baker C.V., Bergman A., Cepko C., Erwin D. H., Pavlicev M., Schlosser G., Widder S., and Laubichler M. D. The origin and evolution of cell types // Nature Reviews Genetics. 2016. V. 17. P. 744–775.
  17. Bach-y-Rita P., Illis L.S. Spinal shock: possible role of receptor plasticity and non synaptic transmission // Paraplegia. 1993. V. 31. N. 2. P. 82–87. https://doi.org/10.1038/sc.1993.14
  18. Bargmann C.I. Beyond the connectome: How neuromodulators shape neural circuits // Bioessays. 2012. V. 34. P. 458–465.
  19. Baysoy A., Bai Z., Satija R., and Fan. R. The technological landscape and applications of single-cell multi-omics // Nature Reviews Moleculr Cell Biology. 2023. V. 24. P. 695–713. https://doi.org/10.1038/s41580-023-00615-w
  20. Benfenati F., Agnati L.F. Communication and computation in the central nervous system // Funct. Neurol. 1991. V. 6. N. 3. P. 202–209.
  21. Chen N., Zhang Y., Rivera-Rodriguez E.J., Yu A. D., Hobin M., Rosbash M., Griffith L.C. Widespread posttranscriptional regulation of cotransmission // Sci. Adv. 2023. V. 9. N.22. https://doi.org/10.1126/sciadv.adg9836
  22. Dorkenwald S., Matsliah A., Sterling A. R. et al. Neuronal wiring diagram of an adult brain //Nature. 2024. V. 634. P. 124–138. https://doi.org/10.1038/s41586-024-07558-y
  23. Dyakonova V.E. Neuronal counter of the life span: does it exist? // Russian Journal of Developmental Biology. 2020. V. 51. P. 197–200.
  24. Dyakonova V.E. Origin and evolution of the nervous system: new data from comparative whole genome studies of multicellular animals // Russian Journal of Developmental Biology. 2022. V. 53. № 1. P. 55–64.
  25. Dyakonova V.E. DNA Instability in Neurons: Lifespan Clock and Driver of Evolution. // Biochemistry (Moscow). 2023. V. 88. № 11. P. 1719–1731. https://doi.org/10.1134/S0006297923110044
  26. Eckstein N., Bates A.S., Champion A., Du M., Yin Y., Schlegel P. et al. Neurotransmitter classification from electron microscopy images at synaptic sites in Drosophila melanogaster // Cell. 2024. V. 187. N. 10. P. 2574–2594. e23. https://doi.org/10.1016/j.cell.2024.03.016
  27. Fuxe K., Agnati L.F., Härfstrand A., Zoli M., von Euler G., Grimaldi R. et al. On the role of neuropeptide Y in information handling in the central nervous system in normal and physiopathological states. Focus on volume transmission and neuropeptide Y/alpha 2 receptor interactions // Ann. NY Acad. Sci. 1990. V. 579. P. 28–67. https://doi.org/10.1111/j.1749-6632.1990.tb48351.x
  28. Kocot K.M., Cannon J.T., Todt C., Citarella M.R., Kohn A.B., Meyer A. et al. Phylogenomics reveals deep molluscan relationships // Nature. 2011. V. 477. P. 452–456. https://doi.org/10.1038/nature10382
  29. Koshtoyants Kh.S., Buznikov G.A., Manukhin B.N. The possible role of 5-hydroxytryptamine in the motor activity of embryos of some marine gastropods // Comp. Biochem. Physiol. 1961. V. 3. N. 1. P. 20–26.
  30. Krienen F.M., Levandowski K.M., Zaniewski H., Del Rosario R.C.H., Schroeder M.E., Goldman M. et al. A marmoset brain cell census reveals regional specialization of cellular identities // Sci. Adv. 2023. V. 9. N.41. eadk3986. https://doi.org/10.1126/sciadv.adk3986
  31. Kopell N.J., Gritton H.J., Whittington M.A., Kramer M.A. Beyond the connectome: the dynome // Neuron. 2014. V. 83. N. 6. P. 1319–1328.
  32. Lacin H., Chen H.-M., Long X., Singer R. H., Lee T., Truman J.W. Neurotransmitter identity is acquired in a lineage-restricted manner in the Drosophila CNS // Elife. 2019. V. 8. https://doi.org/10.7554/eLife.43701
  33. Lin A., Yang R., Dorkenwald S. et al. Network statistics of the whole-brain connectome of Drosophila // Nature. 2024. V. 634. P. 153–165. https://doi.org/10.1038/s41586-024-07968-y
  34. Moroz L.L. Evolutionary conservative and plastic elements in nervous system of the Mollusca // In: Problems of Modern Biology. Moscow University Press. 1986. pp. 19–23.
  35. Moroz L.L. Phylogenetic plasticity of neuronal cells in molluscan nervous systems //In: Simple Nervous Systems. D. Sakharov, ed. Nauka. 1988. pp. 198–202.
  36. Moroz L.L. Monoaminergic control of the respiratory behaviour in freshwater pulmonate snail, Lymnaea stagnalis (L.) // In: Signal Molecules and Behaviour. W. Winlow, O. V. Vinogradova, and D. A. Sakharov, eds. Manchester University Press. 1991. pp. 101–123.
  37. Moroz L.L. On the independent origins of complex brains and neurons // Brain Behav. Evol. 2009. V. 74. P. 177–190. https://doi.org/10.1159/000258665
  38. Moroz L.L. The genealogy of genealogy of neurons // Commun. Integr. Biol. 2014. V. 7. e993269. https://doi.org/10.4161/19420889.2014.993269
  39. Moroz L.L. Neurosystematics and periodic system of neurons: model vs reference species at single-cell resolution // ACS Chem. Neurosci. 2018. V. 9. P. 1884–1903. https://doi.org/10.1021/acschemneuro.8b00100
  40. Moroz L.L. Multiple origins of neurons from secretory cells // Frontiers in Cell and Developmental Biology. 2021. V. 9. P. 669087.
  41. Moroz L.L. Brief History of Ctenophora // Methods Mol. Biol. 2024. V. 2757. P. 1–26. https://doi.org/10.1007/978-1-0716-3642-8_1
  42. Moroz L.L., Kocot K.M., Citarella M.R., Dosung S., Norekian T.P., Povolotskaya I.S. et al. The ctenophore genome and the evolutionary origins of neural systems // Nature. 2014. V. 510. P. 109–114. https://doi.org/10.1038/nature13400
  43. Moroz L.L., Nikitin M.A., Poličar P.G., Kohn A.B., Romanova D. Y. Evolution of glutamatergic signaling and synapses // Neuropharmacology. 2021a. V. 199. P. 108740.
  44. Moroz L.L., Romanova D.Y., Kohn A.B. Neural versus alternative integrative systems: molecular insights into origins of neurotransmitters // Philosophical Transactions of the Royal Society B. 2021b. V. 376. P. 1821. 20190762.
  45. Moroz L.L., Romanova D.Y. Alternative neural systems: What is a neuron? (Ctenophores, sponges and placozoans) // Front. Cell Dev. Biol. 2022. V. 10. 1071961. https://doi.org/10.3389/fcell.2022.1071961
  46. Moroz L.L., Collins R., Paulay G. Ctenophora: Illustrated Guide and Taxonomy // Methods Mol. Biol. 2024. V. 2757. P. 27–102. https://doi.org/10.1007/978-1-0716-3642-8_2
  47. Musser J.M., Schippers K.J., Nickel M., Mizzon G., Kohn A.B., Pape C. et al. Profiling cellular diversity in sponges informs animal cell type and nervous system evolution // Science. 2021. V. 374. P. 717–723. https://doi.org/10.1126/science.abj2949
  48. Rózsa K.S., Dyakonova T.L. Interaction of serotonin and leu-enkephalin on the habituating central neurons of Helix pomatia L. in situ and in vitro // Comp. Biochem. Physiol. C Comp. Pharmacol. Toxicol. 1989. V. 92. N.2. P. 361–370. https://doi.org/10.1016/0742-8413(89)90069-8
  49. Rosen S.C., Kupfermann I., Goldstein R.S., and Weiss K.R. Lesion of a serotonergic modulatory neuron in Aplysia produces a specific defect in feeding behavior // Brain Res. 1983. V. 260. P. 151–155. https://doi.org/10.1016/0006-8993(83)90778-3
  50. Rosen S.C., Kupfermann I., Goldstein R.S., and Weiss K.R. Lesion of a serotonergic modulatory neuron in Aplysia produces a specific defect in feeding behavior // Brain Res. 1983. V. 260. P. 151–155. https://doi.org/10.1016/0006-8993(83)90778-3
  51. Sakharov D.A. Evolutionary aspects of transmitter heterogeneity // J. Neural. Transm. 1974а. Suppl. 11. P. 43–59. PMID: 4152422.
  52. Sakharov D.A. Evolutionary aspects of transmitter heterogeneity // In: Neurovegetative Transmission Mechanisms: Proceedings of the International Neurovegetative Symposium, (1974b). Tihany. June 19–24. P. 43–59. Vienna: Springer Vienna.
  53. Schlegel P., Yin Y., Bates A.S. et al. Whole-brain annotation and multi-connectome cell typing of Drosophila // Nature. 2024. V. 634. P. 139–152. https://doi.org/10.1038/s41586-024-07686-5
  54. Tarashansky A.J., Musser J.M., Khariton M., Li P., Arendt D., Quake S.R., Wang B. Mapping single-cell atlases throughout Metazoa unravels cell type evolution // Elife. 2021. V. 10. e66747.
  55. Whelan N.V., Kocot K.M., Moroz T.P., Mukherjee K., Williams P., Paulay G., Moroz L.L., Halanych K.M. Ctenophore relationships and their placement as the sister group to all other animals // Nat. Ecol. Evol. 2017. V. 1. P. 1737–1746. https://doi.org/10.1038/s41559-017-0331-3
  56. Yao Z., van Velthoven C.T.J., Kunst M., Zhang M., McMillen D., Lee C. et al. A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain // Nature. 2023. V. 624. N.7991. P. 317–332. https://doi.org/10.1038/s41586-023-06812-z

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Дмитрий Антонович Сахаров, ученый и поэт, 2012 г. Фото: Вячеслав Коротихин.

Скачать (124KB)
3. Рис. 1. Голожаберные моллюски — популярные нейробиологические модели. Tritonia tetraquetra (Pallas, 1788) [ранее известная как T. diomedea], Clione limacina (Phipps, 1774) из Friday Harbor США, Aplysia californica (J. G. Cooper, 1863) из Калифорнии, США. Фото: Леонид Мороз.

Скачать (318KB)
4. Рис. 2. A — MCC разных моллюсков, рисунок Сахарова (Сахаров, 1974); B — дорсальный вид живой центральной нервной системы Tritonia с гигантскими нейронами MCC; звездочками показаны некоторые другие гигантские нейроны; фото: Леонид Мороз.

Скачать (290KB)
5. Рис. 3. Принцип иерархической классификации нейронов на основе сходства транскриптомов одиночных нейронов. Указано число групп на каждом иерархическом уровне (по данным статьи Yao et al., 2023).

Скачать (161KB)

© Российская академия наук, 2024