Synthesis, docking and biological activity of antimetabolites based on uraciles and 5-substituted 2,6-dimethylpyrimidin-4(3h)-ones

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

5-Substituted 2,4-dimethyl-1,6-dihydropyrimidin-6-ones reacted with aromatic aldehydes to form 5-substituted (Z)-2-(2-aryl)-1-ethenylpyrimidin-6-ones, and in the reaction of 5-(4-fluorobenzyl)-2,6-dimethylpyrimidin-4(3 H )-one with 4-fluorobenzaldehyde, 5-(4-fluorobenzyl)-2,6-bis[( E )-4-fluorostyryl]pyrimidin-4(3 H )-one. Uracil and 5-fluorouracil were alkylated with 4-methoxy-2-chloromethylbenzaldehyde to give 2-[2,4-dioxoand 5-fluoro-2,4-dioxo-3,4-dihydropyrimidine-1(2 H )methyl]-4-methoxybenzaldehydes and are condensed with 5-substituted 2,4-dimethyl-1,6-dihydropyrimidin-6-ones to form 1-{5[( E )-2-(5-butyl-, arylmethyl-4-methyl6-oxo-1,6-dihydro-pyrimidin-2-yl)vinyl]-2-methoxybenzyl}uracil, 5-fluorouracil, and 5-bromouracil. The results of docking studies and data on the antibacterial, antitumor, and antimonoamine oxidase activity of the synthesized compounds are presented.

Sobre autores

A. Harutyunyan

Scientific and Technological Centre of Organic and Pharmaceutical Chemistry, NAS RA

Email: harutyunyan.arthur@yahoo.com

A. Sumbatyan

Scientific and Technological Centre of Organic and Pharmaceutical Chemistry, NAS RA

A. Hambardzumyan

Scientifc and Production Center “Armbiotechnology” NAS RA

Email: arthambardzumyan@gmail.com

H. Panosyan

Scientific and Technological Centre of Organic and Pharmaceutical Chemistry, NAS RA

A. Grigoryan

Scientific and Technological Centre of Organic and Pharmaceutical Chemistry, NAS RA

H. Stepanyan

Scientific and Technological Centre of Organic and Pharmaceutical Chemistry, NAS RA

R. Muradyan

Scientific and Technological Centre of Organic and Pharmaceutical Chemistry, NAS RA

Bibliografia

  1. Tylinska B., Wiatrak B., Czyznikowska Z., Ciesla-Niechwiadowicz A., Gebarowska E., Janickaklos A. Int. J. Mol. Sci. 2021, 22, 3825-3842. doi: 10.3390/ijms22083825
  2. Арутюнян А.А., Паносян Г.А., Тамазян Р.А., Айвазян А.Г., Гукасян Г.Т., Данагулян Г.Г. ЖОрХ. 2018, 54, 612-619.
  3. Harutyunyan A.A., Gukasyan G.T., Danagulyan G.G., Panosyan H.A., Tamazyan R.A., Aivazyan A.G. Russ. J. Org. Chem. 2018, 54, 771-775. doi: 10.1134/S1070428018040164
  4. Sanduja M., Gupta G., Virmani T. J. Appl. Pharm. Sci. 2020, 10, 129-146. doi: 10.7324/JAPS.2020.102019
  5. Арутюнян А.А., Гукасян Г.Т., Паносян Г.А., Тамазян Р.А., Айвазян А.Г., Данагулян Г.Г. ЖОрХ. 2018, 54, 766-770.
  6. Harutyunyan A.A., Gukasyan G.T., Danagulyan G.G., Panosyan H.A., Tamazyan R.A., Aivazyan A.G. Russ. J. Org. Chem. 2018, 54, 771-775. doi: 10.1134/S1070428018050160
  7. Li P., Maier J.M., Vik E.C., Yehl C.J., Dial B.E., Rickher A.E., Smith M.D., Pellechia P.J., Shimizu K.D. Angew. Chem. 2017, 129, 1. doi: 10.1002/anie.201702950
  8. Hambardzumyan A.A., Hovsepyan A.S., Hayrapetyan H.L., Chailyan S.G. Int. J. Pept. Res. Ther. 2021, 27, 1597-1604. doi: 10.1007/s10989-021-10194-z
  9. Gao Y., Yan L., Huang Y., Liu F., Zhao Y., Cao L., Wang T., Sun Q., Ming Z., Zhang L., Ge J., Zheng L., Zhang Y., Wang H., Zhu Y., Zhu C., Hu T., Hua T., Zhang B., Yang X., Li J., Yang H., Liu Z., Xu W., Guddat L.W., Wang Q., Lou Zh., Rao Z. Science. 2020, 368, 779-782. doi: 10.1126/science.abb7498
  10. Kirsch K., Zeke A., Toke O., Sok P., Sethi A., Sebo A., Kumar G.S., Egri P., Poti A.L., Gooley P., Peti W., Bento I., Alexa A., Remeny A. Nat. Commun. 2020, 11, 5769. doi: 10.1038/s41467-020-19582-3

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2023