Synthesis and luminescence properties of (Z)-2-(difluoroboryl)-3-(quinolin-2-ylmethylidene)-2,3-dihydro-1H-benzo[5,6][1,4]dioxino[2,3-f]isoindol-1-one, a new unsymmetrical BODIPY analogue

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The reaction of dibenzo[b, e][1,4]dioxin-2,3-dicarbonitrile with sodium butoxide in butanol followed by treatment with nitric acid gave 1H-benzo[5,6][1,4]dioxino[2,3-f]isoindole-1,3(2H)-dione. Its condensation with quinaldine leads to the formation of (E, Z)-3-(quinolin-2-ylmethylene)-2,3-dihydro-1H-benzo[5,6][1,4]dioxino[2,3-f]isoindol-1-one, which was treated with BF3‧Et2O in the presence of triethylamine in toluene to obtain a new unsymmetrical analog of BODIPY, (Z)-2-(difluoroboryl)-3-(quinolin-2-ylmethylene)-2,3-dihydro-1H-benzo[5,6][1,4]dioxino[2,3-f]isoindol-1-one. The complex exhibits a Stokes shift of 36 nm and a high relative fluorescence quantum yield (0.72). To support the experimental data, the results of DFT and TDDFT calculations are presented.

作者简介

A. Nabasov

Ivanovo State University of Chemistry and Technology

Email: nik-galanin@yandex.ru
ORCID iD: 0009-0006-2775-9289
俄罗斯联邦, prosp. Sheremetevskii, 7, Ivanovo, 153000

T. Rumyantseva

Ivanovo State University of Chemistry and Technology

Email: nik-galanin@yandex.ru
ORCID iD: 0000-0002-4110-0572
俄罗斯联邦, prosp. Sheremetevskii, 7, Ivanovo, 153000

N. Galanin

Ivanovo State University of Chemistry and Technology

编辑信件的主要联系方式.
Email: nik-galanin@yandex.ru
ORCID iD: 0000-0001-6117-167X
俄罗斯联邦, prosp. Sheremetevskii, 7, Ivanovo, 153000

V. Baklagin

Yaroslavl State Technical University

Email: nik-galanin@yandex.ru
ORCID iD: 0000-0002-0060-1653
俄罗斯联邦, prosp. Moskovskii, 88, Yaroslavl, 150023

M. Abramova

Yaroslavl State Technical University

Email: nik-galanin@yandex.ru
ORCID iD: 0000-0003-1721-3646
俄罗斯联邦, prosp. Moskovskii, 88, Yaroslavl, 150023

I. Abramov

Yaroslavl State Technical University

Email: nik-galanin@yandex.ru
ORCID iD: 0000-0002-8204-1660
俄罗斯联邦, prosp. Moskovskii, 88, Yaroslavl, 150023

参考

  1. Treibs A., Kreuzer F.-H. Lieb. Ann. Chem. 1968, 718, 208–223. doi: 10.1002/jlac.19687180119
  2. Loudet A., Burgess, K. Chem. Rev. 2007, 107, 4891–4932. doi: 10.1021/cr078381n
  3. Schmitt A., Hinkeldey B., Wild M., Jung G. J. Fluoresc. 2009, 19, 755–759. doi: 10.1007/s10895–008–0446–7
  4. Молчанов Е.Е., Марфин Ю.С., Ксенофонтов А.А., Румянцев Е.В. Изв. высш. учебн. завед. Хим. и хим. технол. 2019, 62, 13–18. doi: 10.6060/ivkkt.20196212.6017
  5. Parhi A.K., Kung M.-P., Ploessl K., Kung H.F. Tetrahedron Lett. 2008, 49, 3395–3399. doi: 10.1016/j.tetlet.2008.03.130
  6. Liu H., Lu H., Zhou Z., Shimizu S., Li Z., Kobayashi N., Shen Z. Chem. Commun. 2015, 51, 1713–1716. doi: 10.1039/C4CC06704E
  7. Wu Y., Lu H., Wang S., Li Z., Shen Z. J. Mater. Chem. C. 2015, 3, 12281–12289. doi: 10.1039/c5tc03084f
  8. Yu C., Fang X., Wu Q., Jiao L., Sun L., Li Z., So P.-K., Wong W.-Y., Hao E. Org. Lett. 2020, 22, 4588–4592. doi: 10.1021/acs.orglett.0c00940
  9. Zhang X.F., Zhang G.Q., Zhu J. J. Fluoresc. 2019, 29, 407–416. doi: 10.1007/s10895–019–02349–5
  10. Yue J., Wang N., Wang J., Tao Y., Wang H., Liu J., Zhang J., Jiao J., Zhao W. Anal. Methods. 2021, 13, 2908–2914. doi: 10.1039/D1AY00740H
  11. Cao T., Gong D., Zheng L., Wang J., Qian J., Liu W., Cao Y., Iqbal K., Qin W., Iqbal A. Anal. Chim. Acta. 2019, 1078, 168–175. doi: 10.1016/j.aca.2019.06.033
  12. He H., Lo P.-C., Yeung S.-L., Fong W.-P., Ng D.K.P. Chem. Commun. 2011, 47, 4748–4750. doi: 10.1039/C1CC10727E
  13. Gut A., Ciejka J., Makuszewski J., Majewska I., Brela M., Lapok L. Spectrochim. Acta. A: Mol. Biomol. Spec. 2022, 271, 120898. doi: 10.1016/j.saa.2022.120898
  14. Duran-Sampedro G., Agarrabeitia A.R., Garcia-Moreno I., Gartzia-Rivero L., de la Moya S., Banuelos J., Lopez-Arbeloa I., Ortiz M.J. Chem. Commun. 2015, 51, 11382–11385. doi: 10.1039/C5CC03408F
  15. Zhou Y., Xiao Y., Li D., Fu M., Qian X. J. Org. Chem. 2008, 73, 1571–1574. doi: 10.1021/jo702265x
  16. Nabasov A.A., Koptyaev A.I., Usoltsev S.D., Rumyantseva T.A., Galanin N.E. Macroheterocycles. 2022, 15, 128–132. doi: 10.6060/mhc224262g
  17. Abramov I.G., Smirnov A.V., Abramova M.B., Plakhtinsky V.V. Chem. Heterocycl. Compd. 2000, 36, 1062–1065. doi: 10.1023/A:1002786015976
  18. Oliver S.W., Smith T.D. J. Chem. Soc. Perkin Trans. II. 1987, 1579–1582. doi: 10.1039/P29870001579
  19. Brouwer A.M. Pure Appl. Chem. 2011, 83, 2213–2228. doi: 10.1351/PAC-REP-10–09–31
  20. Suzuki K., Kobayashi A., Kaneko S., Takehira K., Yoshihara T., Ishida H., Shiina Y., Oishi S., Tobita S. Phys. Chem. Chem. Phys. 2009, 11, 9850–9860. doi: 10.1039/B912178A
  21. Becke A.D. J. Chem. Phys. 1993, 98, 5648–5652. doi: 10.1063/1.464913
  22. Slater J.C. Phys. Rev. 1951, 81, 385–390. doi: 10.1103/PhysRev.81.385
  23. Perdew J.P., Wang Y. Phys. Rev. B. 1992, 45, 13244–13249. doi: 10.1103/PhysRevB.45.13244
  24. Rappoport D., Furche F. J. Chem. Phys. 2010, 133, 134105. doi: 10.1063/1.3484283
  25. Granovsky A.A. Firefly, V. 8.2.0 http://classic.chem.msu.su/gran/gamess/index.html
  26. Andrienko G.A. Chemcraft, V.1.8. http://www.chemcraftprog.com

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024