Reaction of 4-Hydroxyspiro[pyrrole-2,3′-pyrrole] and 4′-Hydroxyspiro[imidazole-5,2′-pyrrole] Derivatives with Dicyclohexylcarbodiimide

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The reaction of substituted 4-hydroxyspiro[pyrrole-2,3′-pyrrole] and 4′-hydroxyspiro[imidazole-5,2′-pyrrole] with dicyclohexylcarbodiimide leads to the corresponding derivatives of 4-ureidospiro[pyrrole-2,3′-pyrrole] and 4′-ureidospiro[imidazole-5,2′-pyrrole]. The thermal decomposition of the obtained ureidospirobisheterocycles proceeds nonselectively.

Texto integral

Acesso é fechado

Sobre autores

A. Maslivets

Perm State University

Email: koh2@psu.ru
ORCID ID: 0000-0001-7148-4450
Rússia, ul. Bukireva, 15, Perm, 614990

E. Lystsova

Perm State University

Email: koh2@psu.ru
ORCID ID: 0000-0003-0453-0589
Rússia, ul. Bukireva, 15, Perm, 614990

E. Khramtsova

Perm State University

Autor responsável pela correspondência
Email: koh2@psu.ru
ORCID ID: 0000-0002-5851-3082
Rússia, ul. Bukireva, 15, Perm, 614990

Bibliografia

  1. Asif M., Alghamdi S. Russ. J. Org. Chem. 2021, 57, 1700–1718. doi: 10.1134/S1070428021100201
  2. Raju R., Gromyko O., Fedorenko V., Luzhetskyy A., Muller R. Tetrahedron Lett. 2012, 53, 6300–6301. doi: 10.1016/j.tetlet.2012.09.046
  3. Hartwig W., Born L. J. Org. Chem. 1987, 52, 4352–4358. doi: 10.1021/jo00228a037
  4. Shiomi K., Yang H., Xu Q., Arai N., Namiki M., Hayashi M., Inokoshi J., Takeshima H., Masuma R., Komiyama K., Omura S. J. Antibiot. 1995, 48, 1413–1418. doi: 10.7164/antibiotics.48.1413
  5. Park Y.C., Gunasekera S.P., Lopez J.V., McCarthy P.J., Wright A.E. J. Nat. Prod. 2006, 69, 580–584. doi: 10.1021/np058113p
  6. Han Y., Wu Q., Sun J., Yan C.-G. Tetrahedron. 2012, 68, 8539–8544. doi: 10.1016/j.tet.2012.08.030
  7. Xiang B., Belyk K.M., Reamer R.A., Yasuda N. Angew. Chem. Int. Ed. 2014, 53, 8357–8378. doi: 10.1002/anie.201404084
  8. Song R.-J., Li J.-H., Qian P.-C., Liu Y., Xiang J.-N. Synlett. 2015, 26, 1213–1216. doi: 10.1055/s-0034-1380573
  9. Geesi M.H., Ouerghi O., Dehbi O., Riadi Y. J. Environ. Chem. Eng. 2021, 9, 105344. doi: 10.1016/j.jece.2021.105344
  10. Matiadis D., Stefanou V., Tsironis D., Panagiotopoulou A., Igglessi-Markopoulou O., Markopoulos J. Arch. Pharm. 2021, 354, e2100305. doi: 10.1002/ardp.202100305
  11. Olla S., Manetti F., Crespan E., Maga G., Angelucci A., Schenone S., Bologna M., Botta M. Bioorg. Med. Chem. Lett. 2009, 19, 1512–1516. doi: 10.1016/j.bmcl.2009.01.005
  12. del Corte X., Lopez-Frances A., Villate-Beitia I., Sainz-Ramos M., Palacios F., Alonso C., de los Santos J.M., Pedraz J.L., Vicario J. Pharmaceuticals (Basel.). 2022, 15, 511–530. doi: 10.3390/ph15050511
  13. Козьминых В.О., Игидов Н.М., Зыкова С.С., Колла В.Е., Щуклина Н.С., Одегова Т.Ф. ХФЖ. 2002, 36, 23–26. [Koz’minykh V.O., Igidov N.M., Zykova S.S., Kolla V.E., Shuklina N.S., Odegova T.F. Pharm. Chem. J. 2002, 36, 188–191.] doi: 10.1023/A:1019832621371
  14. Sweeney N.L., Hanson A.M., Mukherjee S., Ndjomou J., Geiss B.J., Steel J.J., Frankowski K.J., Li K., Schoenen F.J., Frick D.N. ACS Infect. Dis. 2015, 1, 140–148. doi: 10.1021/id5000458
  15. Alizadeh N., Sayahi M.H., Iraji A., Yazzaf R., Moazzam A., Mobaraki K., Adib M., Attarroshan M., Larijani B., Rastegar H., Khoshneviszadeh M., Mahdavi M. Bioorg. Chem. 2022, 126, 105876. doi: 10.1016/j.bioorg.2022.105876
  16. Valdes-Pena M.A., Massaro N.P., Lin Y.-C., Pierce J.G. Acc. Chem. Res. 2021, 54, 1866–1877. doi: 10.1021/acs.accounts.1c00007
  17. Khramtsova E.E., Lystsova E.A., Khokhlova E.V., Dmitriev M.V., Maslivets A.N. Molecules. 2021, 26, 7179. doi: 10.3390/molecules26237179
  18. Рачева Н.Л., Алиев З.Г., Масливец А.Н. ЖОрХ. 2008, 44, 1197–1201. [Racheva N.L., Aliev Z.G., Maslivets A.N. Russ. J. Org. Chem. 2008, 44, 1184–1189.] doi: 10.1134/S1070428008080137
  19. Кобелев А.И., Дмитриев М.В., Масливец А.Н. ЖОрХ. 2021, 57, 103–108. [Kobelev A.I., Dmitriev M.V., Maslivets A.N. Russ. J. Org. Chem. 2021, 57, 108–112.] doi: 10.1134/S1070428021010152
  20. Lutjen A.B., Quirk M.A., Barbera A.M., Kolonko E.M. Bioorg. Med. Chem. 2018, 26, 5291–5298. doi: 10.1016/j.bmc.2018.04.007
  21. Williams A., Ibrahim I.T. Chem. Rev. 1981, 81, 589–636. doi: 10.1021/cr00046a004
  22. CrysAlisPro, Agilent Technologies, Version 1.171.37.33.
  23. Sheldrick G.M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112–122. doi: 10.1107/S0108767307043930
  24. Sheldrick G.M. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3–8. doi: 10.1107/S2053229614024218
  25. Dolomanov O.V., Bourhis L.J., Gildea R.J, Ho-ward J.A.K., Puschmann H. J. Appl. Cryst. 2009, 42, 339–341. doi: 10.1107/S0021889808042726
  26. Масливец А.Н., Машевская И.В., Красных О.П., Шуров С.Н., Андрейчиков Ю.С. ЖОрХ. 1992, 28, 2545–2553. [Maslivets A.N., Mashevskaya I.V., Krasnykh O.P., Shurov S.N., Andreichikov Yu.S. J. Org. Chem. USSR. 1992, 28, 2056–2062.]
  27. Андрейчиков Ю.С., Масливец А.Н., Смирнова Л.И., Красных О.П., Козлов А.П., Перевозчиков Л.А. ЖОрХ. 1987, 23, 1534. [Andreichikov Yu.S., Maslivets A.N., Smirnova L.I., Krasnykh O.P., Kozlov A.P., Perevozchikov L.A. J. Org. Chem. USSR. 1987, 23, 1378–1387.]

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024