Modeling of Structural Properties and Transport Phenomena in Doped Multicomponent 2D Semiconductors

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using density functional theory (DFT), the electronic structure, lattice parameters, magnetic and thermodynamic properties of TlIn1–xCrxS2 with a monoclinic system were calculated. The influence of the degree of doping with chromium impurities on the properties of TlIn1–xCrxS2 supercells has been studied. Calculations were carried out using ab initio methods in the local electron density approximation (LDA) and in the generalized gradient approximation (GGA). Spin-orbit and Coulomb interactions were taken into account in DFT calculations. A change in the concentration of chromium impurity (x = 0.001–0.02) in TlInS2 does not lead to a change in the equilibrium lattice parameters and the type of magnetic ordering in TlIn1–xCrxS2.

Phase equilibria and stability of binary and ternary compounds were studied by the thermodynamic method and the functional DFT GGA method in the Tl–In–S ternary system. The constructed isothermal section of the phase diagram at 298 K confirms the insignificant region of homogeneity, based on intermediate ternary compounds, of the Tl–In–S system. The formation energies of the compounds TlInS2 and TlIn1–xCrxS2 (x = 0.001–0.02) were calculated by the DFT method and are thermodynamically consistent with each other. The energy of formation of the TlInS2 compound, calculated by theoretical methods, is also consistent with experimental data.

This indicates the adequacy of the calculation models used. In order to determine stable doping conditions, we analyzed the thermodynamic properties of the phases of the Tl–In–S system, established stable states of multicomponent phases, stable equilibria between binary and ternary compounds of the TlIn1–xCrxS2 system.

Polycrystals were synthesized and TlIn1–xCrxS2 single crystals with different chromium impurity concentrations (x = 0, 0.001 and 0.02) were grown from them. The crystal structure, thermodynamic, dielectric, electrical and dosimetric characteristics of TlIn1–xCrxS2 single crystals were studied. The calculated thermodynamic and physical properties of the TlIn1–xCrxS2 phases are compared with experimental data.

Full Text

Restricted Access

About the authors

S. M. Asadov

Nagiyev Institute of Catalysis and Inorganic Chemistry, Ministry of Science and Education of Azerbaijan; Scientific Research Institute “Geotechnological Problems of Oil, Gas, and Chemistry,” Ministry of Science and Education of Azerbaijan; Azerbaijan State Oil and Industry University, Ministry of Science and Education of Azerbaijan

Author for correspondence.
Email: mirasadov@gmail.com
Azerbaijan, Baku; Baku; Baku

S. N. Mustafaeva

Institute of Physics, Ministry of Science and Education of Azerbaijan

Email: mirasadov@gmail.com
Azerbaijan, Baku

A. N. Mammadov

Nagiyev Institute of Catalysis and Inorganic Chemistry, Ministry of Science and Education of Azerbaijan; Azerbaijan Technical University, Ministry of Science and Education of Azerbaijan

Email: mirasadov@gmail.com
Azerbaijan, Baku; Baku

V. F. Lukichev

Valiev Institute of Physics and Technology, Russian Academy of Sciences

Email: lukichev@ftian.ru
Russian Federation, Moscow

References

  1. Mustafaeva S.N., Aliev V.A., Asadov M.M. DC hopping conduction in TlGaS2 and TlInS2 single crystals // Physics of the Solid State. 1998. V. 40. No 4. P. 612–615.
  2. Mustafaeva S.N., Asadov M.M., Ramazanzade V.A. Dielectric properties and alternating current conductivity of TlInS2 single crystals // Physics of the Solid State. 1996. V. 38. No 1. P. 14–18.
  3. Mustafaeva S.N., Asadov M.M. Effect of chemical composition of TlIn1-xErxS2 (0 ≤ x ≤ 0.01) crystals on their dielectric characteristics and the parameters of localized states // Physics of the Solid State. 2019. V. 61. No 11. P. 1999–2004, https://doi.org/10.1134/S1063783419110246
  4. Mustafaeva S.N., Asadov M.M., Huseynova S.S., Hasanov N.Z., Lukichev V.F. Ab initio calculations of electronic properties, frequency dispersion of dielectric coefficients and the edge of the optical absorption of TlInS2:Sn single crystals // Physics of the Solid State. 2022. V. 64. No 6. P. 617–627, https://doi.org/10.21883/PSS.2022.06.53823.299
  5. Mustafaeva S.N., Asadov S.M., Guseinova S.S. Ab initio calculation of the structure and frequency dependences of dielectric properties of new semiconductors TlIn1−xTmxS2 (x = 0.001 and 0.005), Physics of the Solid State. 2024. V. 66. No 4. P. 524–531, https://doi.org/10.61011/FTT.2024.04.57789.8
  6. Asadov S.M., Mustafaeva S.N., Huseinova S.S., Lukichev V.F. Simulation of Electronic Properties, Enthalpy of Formation, and Dielectric Characteristics of Yb-Doped Single Crystal TlInS2 // Russian Journal of Physical Chemistry A. 2024. V. 98. No. 1. P. 1–8, https://doi.org/10.1134/S0036024424010023
  7. Gasanly N.M. Low temperature absorption edge and photoluminescence study in TlIn(Se1-xSx)2 layered mixed crystals // Physica B: Condensed Matter. 2018. V. 530. P. 82–85, https://doi.org/10.1016/j.physb.2017.11.042
  8. El-Nahass M.M., Ali H.A.M., Abu-Samaha F.S.H. Optical characteristics of Tl0.995Cu0.005InS2 single crystals // Physica B: Condensed Matter. 2013 V. 415. P. 57–61. https://doi.org/10.1016/j.physb.2013.01.036
  9. Delice S., Gasanly N.M. Defect characterization in neodymium doped thallium indium disulfide crystals by thermoluminescence measurements // Physica B: Condensed Matter. 2016. V. 499. P. 44–48, http://dx.doi.org/10.1016/j.physb.2016.07.006
  10. Seyidov M.Yu., Mikailzade F.A., Suleymanov R.A., Aliyeva V.B., Mammadov T.G., Sharifov G.M. Polarization switching in undoped and La-doped TlInS2 ferroelectric-semiconductors // Physica B: Condensed Matter. 2017 V. 526. P. 45–53, https://doi.org/10.1016/j.physb.2017.07.003
  11. Таshмеtоv M.Yu., Khаllоkоv F.K., Ismatov N.B., Umarov S.Kh. Influence of accelerated electrons on the structure, crystallite size and surface of a TlIn1-xCrxS2 crystal with x = 0.01 // Uzbek Journal of Physics. 2023. V. 23. No 4. P. 51–56, https//doi.org/10.52304/.v23i4.289
  12. Khallokov F.К., Imanova G.T., Umarov S.Kh., Tashmetov M.Yu., Gasanov N. Z., Esanov Z.U., Bekpulatov I.R. Influence of electron irradiation on the band gap and microhardness of TlInS2, TlInSSe and TlIn0.99Cr0.01S2 single crystals // Materials Research Innovations. 2004. P. 1–5, https://doi.org/10.1080/14328917.2024.2363583
  13. Okumus E., Tokdemir Ö.S, Chumakov Y.M. Identification of Mn dopant in the structure of TlInS2 layered semiconductor // Materials Research Express. 2019. V. 6. No 5. P. 056110, https://doi.org/10.1088/2053-1591/ab063e
  14. Mikailov F.A., Rameev B.Z., Kazan S., Yıldız F., Aktaş B. Electron paramagnetic resonance investigation of Fe3+ doped TlInS2 single crystal // Solid State Communications. 2005. V. 35. No 1–2. P. 114–118, https://doi.org/10.1016/j.ssc.2005.03.043
  15. Huang Z., Peng X., Yang H., He C., Xue L., Hao G., Zhang C., Liu W., Qi X., Zhong J. The structural, electronic and magnetic properties of bi-layered MoS2 with transition-metals doped in the interlayer // RSC Advances. 2013. V. 3. No 31. P. 12939–12943, https://doi.org/10.1039/C3RA41490F
  16. Ali R., Hanif M., Shah S.A.B., Abbas S. Z., Karim M. R. A., Arshad M., Ahmad S.H.A. Effect of chromium-doping on structure and opto-electronics properties of nanostructured indium tin oxide thin films // Applied Physics A. 2022. V. 128. No 508. P. 1–6, https://doi.org/10.1007/s00339-022-05639-1
  17. Asadov M.M., Mustafaeva S.N., Guseinova S.S., Lukichev V.F. Ab Initio calculations of the electronic properties and the transport phenomena in graphene materials // Physics of the Solid State. 2020. V. 62. No 11. P. 2224–2231, https://doi.org/10.1134/S1063783420110037
  18. Asadov M.M., Mustafaeva S.N., Guseinova S.S., Lukichev V.F., Tagiev D.B. Ab Initio modeling of the effect of the position and properties of ordered vacancies on the magnetic state of a graphene monolayer // Physics of the Solid State. 2021. V. 63. No 5. P. 797–806, https://doi.org/10.1134/S1063783421050036.
  19. Asadov M.M., Mustafaeva S.N., Guseinova S.S., Lukichev V.F. Simulation of supercell defect structure and transfer phenomena in TlInTe2 // Russian Microelectronics. 2023. V. 52. No 1. P. 21–31, https://doi.org/10.1134/S1063739722700196
  20. Asadov M.M., Mammadova S.O., Guseinova S.S., Mustafaeva S.N., Lukichev V.F. Simulation of the adsorption and diffusion of lithium atoms on defective graphene for a Li-ion battery // Russian Microelectronics. 2023. V. 52. No 3. P. 167–185, https://doi.org/10.1134/S1063739723700336
  21. Asadov M.M., Mammadova S.O., Mustafaeva S.N., Huseynova S.S., Lukichev V.F. Modeling of the electronic properties of M-doped supercells Li4Ti5O12–M (М = Zr, Nb) with a monoclinic structure for lithium-lon batteries // Russian Microelectronics. 2024. V. 53. No 1. P. 1–13, https://doi.org/10.1134/S1063739723600127
  22. Asadov M.M., Huseinova S.S., Mustafaeva S.N., Mammadova S.O., Lukichev V.F. Simulation of the physical-chemical and electronic properties of lithium-containing 4H–SiC and binary phases of the Si–C–Li system // Russian Microelectronics. 2024. V. 53. No 1. P. 14–34, https://doi.org/10.1134/S1063739723600097
  23. Asadov S.M., Mustafaeva S.N., Guseinov D.T. X-ray dosimetric characteristics of AgGaS2 single crystals grown by chemical vapor transport // Inorganic Materials. 2017. V. 53. No 5. P. 457–461, https://doi.org/10.1134/S0020168517050028
  24. Asadov S.M., Mustafaeva S.N., Guseinov D.T., Kelbaliev K.I. Dependence of the X-ray dosimetric parameters of AgGaS2xSe2–2x single crystals on their composition // Technical Physics. 2018. V. 63. No 4. P. 546–550, https://doi.org/10.1134/S1063784218040047
  25. Asadov S.M., Mustafaeva S.N., Guseinov D.T., Kelbaliev K.I., Lukichev V.F. Dependence of the X-ray Sensitivity of AgGaS2 Single Crystals on Faces (001) and (100) on Dose and Hardness of Radiation // Russian Microelectronics. 2022. V. 51. No 3. P. 117–125, https://doi.org/10.1134/S1063739722030027
  26. Vuckovic S., Song S., Kozlowski J., Sim E., Burke K. Density functional analysis: The theory of density-corrected DFT // Journal of Chemical Theory and Computation. 2019. V. 15. P. 1–30, https://doi.org/10.1021/acs.jctc.9b00826.
  27. Holzer C., Franzke Y.J., Pausch A. Current density functional framework for spin–orbit coupling // The Journal of Chemical Physics. 2022. V. 157. P. 204102–16, https://doi.org/10.1063/5.0122394
  28. Asadov M.M., Mustafaeva S.N., Guseinova S.S., Lukichev V.F. Ab initio calculations of electronic properties and charge transfer in Zn1-xCuxO with wurtzite structure // Physics of the Solid State. 2022. V. 64. No 5. P. 528–539, https://doi.org/10.21883/PSS.2022.05.54011.270
  29. Babuka T., Gomonnaic O.O., Glukhova K.E., Kharkhalisa L.Yu., Sznajdere M., Zahn D.R.T. Electronic and Optical Properties of the TlInS2 Crystal: Theoretical and Experimental Studies // Acta Physica Polonica A. 2019. V. 136. No 4. Р. 640–644, https://doi.org/ 10.12693/APhysPolA.136.640
  30. Asadov M.M., Mammadova S.O., Huseinova S.S., Mustafaeva S.N., Lukichev V. F. Ab initio calculation of the band structure and properties of modifications of the Ti3Sb compound doped with lithium // Physics of the Solid State. 2022. V. 64. No 11. Р. 1594–1609, https://doi.org/10.21883/PSS.2022.11.54179.395
  31. Alekperov O.Z., Ibragimov G.B., Axundov I.A. Growth of orthorhombic and tetragonal modifications of TlInS2 from its monoclinic phase // Physica Status Solidi C. 2009. V. 6. No 5. P. 981–984, https://doi.org/10.1002/pssc.200881191
  32. Mills K.C. Thermodynamic Data for Inorganic Sulphides, Selenides and Tellurides, NPL, Teddington. John Wiley and Sons, Incorporated, 1974, ISBN: 9780470606551.
  33. Vasiliev V.P., Minaev V.S. Tl-S phase diagram, structure and thermodynamic Properties // Journal of Optoelectronics and Advanced Materials. 2008. V. 10. No 6. P. 1299–1305.
  34. Vasiliev V.P. Correlations between the Thermodynamic Properties of II–VI and III–VI Phases // Inorganic Materials. 2007. V. 43. No 2. P. 115–124, https://doi.org/10.1134/S0020168507020045
  35. http://www.chem.msu.ru/cgi-bin/tkv.pl?show=welcome.html/welcome.html
  36. Kubaschewski O., Alcock C.B., Spencer P.J. Materials Thermochemistry. (6nd edn). Pergamon Press, 1993: ISBN 9780080418896
  37. Okamoto, H. In-S (Indium-Sulfur). Journal of Phase Equilibria and Diffusion. 2013. V. 34. P. 149–150, https://doi.org/10.1007/s11669-012-0152-7
  38. Waldner P., Sitte W. Thermodynamic modeling of the Cr–S system // International Journal of Materials Research. 2011. V. 102. No 10. P. 1216–1225, 10.3139/146.110587' target='_blank'>https://doi: 10.3139/146.110587
  39. https://himikatus.ru/art/phase-diagr1/In-Tl.php
  40. Babanly M.B., Yusibov Yu.A. Electrochemical methods in thermodynamics of inorganic substances. (1st edn). Baku, Elm, 2011, ISBN: 9789952453171
  41. Asadov M.M., Kuli-zade E.S. Phase equilibria, thermodynamic analysis and electrical properties of the Li2O–Y2O3–B2O3 system // Journal of Alloys and Compounds. 2020. V. 842. P. 155632–32, https://doi.org/10.1016/j.jallcom.2020.155632
  42. Mott N.F., Davis E.A. Electronic Processes in Non-Crystalline Materials. (2nd edn). OUP, Oxford, 2012, ISBN: 9780199645336
  43. Pollak M. On the frequency dependence of conductivity in amorphous solids // Philosophical Magazine. 1971. V. 23. No 183. P. 519–542, 10.1080/14786437108216402' target='_blank'>https://doi: 10.1080/14786437108216402
  44. Arshak K., Korostynska O. (Eds.) Advanced Materials and Techniques for Radiation Dosimetry. (1st edn). Boston. London. Artech House, Inc. 2006, ISBN: 9781580533409.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The first Brillouin zone of the crystal lattice of the base-centered monoclinic system.

Download (105KB)
3. Fig. 2. X-ray diffraction pattern of TlIn0.99Cr0.01S2.

Download (228KB)
4. Fig. 3. Atomic structure of the unit cell of TlIn1-xCrxS2 crystals with monoclinic system (pr. gr. C2/c): a) x = 0, b) x = 0.01.

Download (118KB)
5. Fig. 4. Temperature dependence of the optical bandgap width of TlInS2 monocrystal with monoclinic structure.

Download (71KB)
6. Fig. 5. Zone structure of the supercell of the p-type semiconductor TlIn1-xCrxS2 (x = 0.005) with direct forbidden band width.

Download (138KB)
7. Fig. 6. Schematic of the energy spectrum of semiconductors with valence band and conduction band.

Download (146KB)
8. Fig. 7. Schematic of the effect of chromium doping on the zone structure of the semiconductor. Cr+3 introduces donor levels and moves EF toward the conduction band (n-type doping), while the acceptor impurity Cr+6 moves EF toward the valence band (p-type doping).

Download (90KB)
9. Fig. 8. PDOS of electronic energy sublevels (s-, p-, d-orbitals) of Cr impurity in MoS2:Cr bilayer. The Fermi level is equal to zero.

Download (125KB)
10. Fig. 9. Schematic of superexchange interaction between Cr-3d impurity orbitals through the S-3p orbital in TlIn1-xCrxS2.

Download (102KB)
11. Fig. 10. Isothermal section of the phase diagram of the Tl-In-S system at 298 K.

Download (146KB)
12. Fig. 11. Frequency dependences of the real component of the complex dielectric permittivity of TlIn1-xCrxS2 single crystals: x = 0.005 (1) and 0.001 (2); T = 298 K.

Download (64KB)
13. Fig. 12. Frequency dependences of the dissipation factor tgδ in TlIn1-xCrxS2 single crystals: x = 0.005 (1) and 0.01 (2); T = 298 K.

Download (89KB)
14. Fig. 13. Frequency dependence of the imaginary part of the complex dielectric permittivity ε˝ of TlIn1-xCrxS2 samples: x = 0.005 (1) and 0.01 (2); T = 298 K.

Download (64KB)
15. Fig. 14. Frequency dependence of ac-conductivity of TlIn1-xCrxS2 single crystals: x = 0.005 (1), 0.01 (2) and 0 (3); T = 298 K.

Download (75KB)
16. Fig. 15. The dependences of the localized state parameters NF, R, τ and ∆E on the composition of TlIn1-xCrxS2 single crystals calculated by us.

Download (85KB)
17. Fig. 16. Dependences of the X-ray sensitivity coefficient on the irradiation dose rate for single crystals TlInS2 (a) and TlIn0.995Cr0.005S2 (b) at different accelerating voltages on the tube Va, keV: 25 (1), 30 (2), 35 (3), 40 (4), 45 (5), 50 (6). T = 298 K.

Download (159KB)
18. Fig. 17. X-ray characteristics of single crystals TlInS2 (a) and TlIn0.995Cr0.005S2 (b) at different accelerating voltages on the tube Va, keV: 25 (1), 30 (2), 35 (3), 40 (4), 45 (5), 50 (6). T = 298 K.

Download (160KB)

Copyright (c) 2024 Russian Academy of Sciences