Acylated Flavonoids from Cucumis sativus Inhibit Activity of Human Pancreatic Lipase

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Lipid metabolism disorders are a large group of diseases for the treatment of which various strategies are used including the use of pancreatic lipase inhibitors reduced the intake and adsorption of lipids. This study was the first shown that agricultural wastes of cucumber (Cucumis sativus) can be a source of the effective lipase inhibitors. As a result of the chromatographic separation of C. sativus leaves metabolites, seven acylated flavonoids were identified, including three new derivatives of isovitexin characterized by UV, NMR spectroscopy and mass spectrometry data as isovitexin-2"-O-glucoside-6"'-O-ferulate (1), isovitexin-2"-O-glucoside-6"'-O-p-coumarate (2), and isovitexin-2"-O-(6"'-O-feruloyl)-glucoside-6"'-O-ferulate (3). The quantitative HPLC data showed that the total content of the acylated flavonoids in the leaves of Russian varieties C. sativus amounted to 3.78–7.44 mg/g of dry plant weight. Isolated compounds demonstrated the ability to inhibit the human pancreatic lipase and the effectiveness of compound 3 was the greatest and exceeded the activity of the reference compound Orlistat. This study has shown that C. sativus leaves can be the useful source of biologically active phytocomponents with hypolipidemic activity.

Sobre autores

D. Olennikov

Institute of General and Experimental Biology SD RAS

Autor responsável pela correspondência
Email: olennikovdn@mail.ru
Russia, 670047, Ulan-Ude

N. Kashchenko

Institute of General and Experimental Biology SD RAS

Email: olennikovdn@mail.ru
Russia, 670047, Ulan-Ude

Bibliografia

  1. Volkova I.N. // Geograph. Environ. Living Syst. 2021. V. 1. P. 93–109. https://doi.org/10.18384/2712-7621-2021-1-93-109
  2. Sharipov Sh.I., Ibragimova B.Sh. // Econ. Anal. Theory Pract. 2018. V. 17. P. 1340–1355. https://doi.org/10.24891/ea.17.12.1340
  3. Седых Т.В., Погребняк С.В. // Вестник ОмГАУ. 2016. № 3. С. 53–58.
  4. Korottseva I.B., Belov S.N. // Veget. Crops Russ. 2022. V. 6. P. 29–34. https://doi.org/10.18619/2072-9146-2022-6-29-34
  5. Khan A., Mishra A., Hasan S.M., Usmani A., Ubaid M., Khan N., Saidurrahman M. // J. Complement. Integr. Med. 2022. V. 19. P. 843–854. https://doi.org/10.1515/jcim-2020-0240
  6. Mukherjee P.K., Nema N.K., Maity N., Sarkar B.K. // Fitoterapia. 2013. V. 84. P. 227–236. https://doi.org/10.1016/j.fitote.2012.10.003
  7. Olennikov D.N., Kashchenko N.I. // Chem. Nat. Compd. 2023. V. 58. P. 324–329. https://doi.org/10.1007/s10600-022-03858-9
  8. Lowe M.E. // Ann. Rev. Nutr. 1997. V. 17. P. 141–158. https://doi.org/10.1146/annurev.nutr.17.1.141
  9. Zhu G., Fang Q., Zhu F., Huang D., Yang C. // Front. Genet. 2021. V. 12. 693538. https://doi.org/10.3389/fgene.2021.693538
  10. Liu T.-T., Liu X.-T., Chen Q.-X., Shi Y. // Biomed. Pharmacother. 2020. V. 128. 110314. https://doi.org/10.1016/j.biopha.2020.110314
  11. Li M., Chen Y., Ruan J., Wang W., Chen J., Zhang Q. // Curr. Res. Food. Sci. 2023. V. 6. 100424. https://doi.org/10.1016/j.crfs.2022.100424
  12. Olennikov D.N., Khandy M.T., Chirikova N.K. // Horticulturae. 2022. V. 8. 975. https://doi.org/10.3390/horticulturae8100975
  13. Olennikov D.N., Chemposov V.V., Chirikova N.K. // Foods. 2022. V. 11. 2801. https://doi.org/10.3390/foods11182801
  14. McNally D.J., Wurms K.V., Labbé C., Quideau S., Bélanger R.R. // J. Nat. Prod. 2003. V. 66. P. 1280–1283. https://doi.org/10.1021/np030150y
  15. Abou-Zaid M.M., Lombardo D.A., Kite G.C., Grayer R.J., Veitch N.C. // Phytochemistry. 2001. V. 58. P. 167–172. https://doi.org/10.1016/s0031-9422(01)00156-x
  16. Kashchenko N.I., Jafarova G.S., Isaev J.I., Olennikov D.N., Chirikova N.K. // Plants. 2022. V. 11. 2126. https://doi.org/10.3390/plants11162126
  17. Olennikov D.N., Chirikova N.K. // Chem. Nat. Compd. 2019. V. 55. P. 1032–1038. https://doi.org/10.1007/s10600-019-02887-1
  18. Olennikov D.N., Kashchenko N.I. // Appl. Biochem. Microbiol. 2023. V. 59. P. 59–67. https://doi.org/10.1134/S0003683823010064
  19. Olennikov D.N., Kashchenko N.I. // Chem. Nat. Compd. 2020. V. 56. P. 1026–1034. https://doi.org/10.1007/s10600-020-03220-x
  20. An L., Wang J., Liu Y., Chen T., Xu S., Feng H., Wang X. // Proc. SPIE. 2003. V. 4896. P. 223–231. https://doi.org/10.1117/12.468231
  21. Insanu M., Zahra A.A., Sabila N., Silviani V., Haniffadli A., Rizaldy D., Fidrianny I. // Maced. J. Med. Sci. 2022. V. 10. P. 616–622. https://doi.org/10.3889/oamjms.2022.8337
  22. Zhao L., Huang Y., Paglia K., Vaniya A., Wancewicz B., Keller A.A. // Environ. Sci. Technol. 2018. V. 52. P. 7092–7100. https://doi.org/10.1021/acs.est.8b00742
  23. Custers E.M.E., Kiliaan J.A. // Progr. Lipid Res. 2022. V. 85. 101144. https://doi.org/10.1016/j.plipres.2021.101144
  24. Rahim A.T.M.A., Takahashi Y., Yamaki K. // Food Res. Int. 2015. V. 75. P. 289–294. https://doi.org/10.1016/j.foodres.2015.05.017
  25. Buchholz T., Melzig M. // Planta Med. 2015. V. 81. P. 771–783. https://doi.org/10.1055/s-0035-1546173

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (225KB)
3.

Baixar (124KB)
4.

Baixar (5KB)

Declaração de direitos autorais © Д.Н. Оленников, Н.И. Кащенко, 2023