Effect of ethanol on the growth of the red microalga Galdieria sulphuraria

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Polyextremophilic red microalgae of the genus Galdieria, which inhabit hot sulphur springs under conditions unusual for eukaryotes, are capable of heterotrophy. Among the dozens of exogenous organic substrates identified for Galdieria, ethanol is not mentioned as a possible energy source. As it turned out that ethanol did not alter the growth of the model species Galdieria sulphuraria when grown in the dark. In contrast, the growth of microalgae is activated in the light, despite the known cell stressor effect of ethanol. The effect of ethanol as an oxidative stress factor may be indicated by the increase in cellular respiration observed in the dark and also in the light even before the activation of photosynthesis. The marked acceleration of growth of G. sulphuraria culture in the light is most likely due to the stimulation of respiration by ethanol with generation of CO2 and its use by chloroplasts as an additional carbon substrate during the photosynthetic process. Compared to the classical organic substrate glucose, the light-induced growth of G. sulphuraria cultures in the presence of ethanol is less intense. It can be speculated that ethanol stress in light induces the system of two consecutive key enzymes in the primary alcohol metabolism chain (alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase), which then leads to the eventual complete oxidation of ethanol, resulting in accelerated growth of G. sulphuraria.

全文:

受限制的访问

作者简介

Yu. Bolychevtseva

Research Center of Biotechnology, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: bolychev1@yandex.ru

Bach Institute of Biochemistry

俄罗斯联邦, Moscow, 119071

I. Stadnichuk

Timiryasev Institute of Plant Physiology, Russian Academy of Sciences

Email: bolychev1@yandex.ru
俄罗斯联邦, Moscow, 127726

参考

  1. Yoon H.S., Müller K.M., Sheath R.G., Ott F.D., Bhattacharya O. // J. Phycol. 2006. V. 42. P. 482–492. https://doi.org/10.1111/j.1529-8817.2006.00210.x
  2. Pollio A., Cennamo P., Ciniglia C., De Stefano M., Pinto G., Huss V.A.R. // Protist. 2005. V. 156. № 3. P. 287–302. https://doi.org/10.1016/j.protis.2005.04.004
  3. Liu C., Liu J., Hu S., Wang X., Wang X., Guan Q. // Peer J. 2019. 7:e7189. P. 1–10. https://doi.org/10.7717/peerj.7189
  4. Muravenko O., Selyakh I., Kononenko N., Stadnichuk I. // Eur. J. Phycol. 2001. V. 36. P. 227–232.
  5. Miyagishima S., Tanaka K. // Plant Cell Physiol. 2001. V. 62. P. 926–941. https://doi.org/10.1093/pcp/pcab052
  6. Stadnichuk I.N., Tropin I.V. // Biochemistry (Moscow). 2022. V. 87. № 5. P. 472– 487. https://doi.org/10.31857/S0320972522050050
  7. Seckbach J. Overview of Cyanidian Biology. / Eds. J. Seckbach, D.J. Chapman. N.Y.: Springer, 2010. 345 p.
  8. Selosse M.-A., Charpin M., Not F. // Ecol. Lett. 2017. V. 20. № 2. P. 246–263. https://doi.org/10.1111/ele.12714
  9. Přibyl1 P., Cepák V. // J. Appl. Phycol. 2019. V. 31. P. 1555–1564. https://doi.org/10.1007/s10811-019-1738-9
  10. Gross W., Schnarrenberger C. // Plant Cell Physiol. 1995. V. 36. № 4. P. 633–648. https://doi.org/10.1007/s10811-019-1738-9
  11. Oesterhelt С., Schnarrenberger C., Gross W. // Eur. J. Phycol. 1999. V. 34. № 3. P. 271–277. https://doi.org/10.1080/09670269910001736322
  12. Schmidt R.A., Wiebe M.G., Eriksen N.T. // Biotechnol. Bioeng. 2005. V. 90. № 1. P. 77–84. https://doi.org/10.1002/bit.20417
  13. Seckbach J., Baker F.A., Shugerman P.M. // Nature. 1970. V. 227. P. 744–745.
  14. Tischendorf G., Oesterhelt C., Hoffmann S., Girnus J., Schnarrenberger C., Gross W. // Eur. J. Phycol. 2007. V. 42. № 3. P. 243–251. https://doi.org/10.1080/09670260701437642
  15. Lang I., Bashir S., Lorenz M., Rader S., Weber G. // Appl. Phycol. 2022. V. 3. № 1. P. 1–12. https://doi.org/10.1080/26388081.2020.1765702
  16. Čížková M., Vítová M., Zachleder V. Microalgae - From Physiology to Application. / Ed. M. Vitova. IntechOpen. 2019. P. 1–17. https://doi.org/10.5772/intechopen.89810
  17. Selvaratnam T., Pegallapati A.K., Montelya F., Rodriguez G., Nirmalakhandan N., Van Voorhies W., Lammers P.J. // Bioresour. Technol. 2014. V. 156. P. 395–399. https://doi.org/10.1016/j.biortech.2014.01.075
  18. Duboc P., von Stockar U. // Biotechnol. Bioeng. 1998. V. 58. № 4. P. 426–439. https://doi.org/10.1002/(SICI)1097-0290(19980520) 58:4<428::AID-BIT10>3.0.CO;2-7
  19. Sloth J.K., Wiebe M.G., Eriksen N.T. // Enzyme Microbial. Technol. 2006. V. 38. № 1–2. P. 168–175. https://doi.org/10.1016/j.enzmictec.2005.05.010
  20. Schwern, P., Hübner H., Buchholz R. // Eng. Life Sci. 2016. V. 17. № 2. P. 140–144. https://doi.org/10.1002/elsc.201600004
  21. Voloshina O.V., Bolychevtseva Y.V., Kuzminov F.I., Gorbunov M.Y., Elanskaya I.V., Fadeev V.V. // Biochemistry (Moscow). 2016. V. 81. №. 8. P. 858–870.
  22. Saeki A., Taniguchi M., Matsushita K., Toyama H., Theeragool, G. Lotong, N., Adachi O. // Biosci. Biotechnol. Biochem. 1997. V. 61. № 2. P. 317–323.
  23. Jiang Y., Xiao P., Shao Q., Qin H., Hu Z., Lei A., Wang J. // Biotechnol. Biofuels. 2017. V. 10. № 239. P. 1–16. https://doi.org/10.1186/s13068-017-0931-9
  24. Божков А.И., Мензянова Н.Г., Сысенко Е.И. // Biotechnologia Acta. 2014. V. 7. № 1. P. 93–99.
  25. Rodriguez-Zavala J.S., Rodriguez-Zavala M.A., Ortiz-Cruzm R., Moreno-Sanchez R. // J. Eukaryot. Microbiol. 2006. V. 53. № 1. P. 36–42. https://doi.org/10.1111/j.1550-7408.2005.00070.x
  26. Sloth J.K., Jensen H.C., Pleissner D., Eriksen N.T. // Bioresource Technology. 2017. V. 238. P. 296–305. http://dx.doi.org/10.1016/j.biortech.2017.04.043
  27. Stadnichuk I.N., Semenova L.R., Smirnova G.P., Usov A.I. // Appl. Biochem. Microbiol. 2007. V. 43. P. 88–93.
  28. Sentsova O.Yu. // Botanichesky J. 1991. V. 76. № 1. P. 69–79.
  29. Averina N.G., Kozel N.V., Shcherbakov R.A., Radyuk M.S., Manankina E.E., Goncharik R.G., Shalygo N.V. // Proceedings Nat. Acad. Sci. Belarus. Biol. Series. 2020. V. 65. P. 7–15. https://doi.org/10.29235/1029-8940-2020-65-1-7-15
  30. Lowrey J., Brooks M.S., McGinn P.J. // J. Appl. Phycol. 2015. V. 27. P. 1485–1498. https://doi.org/10.1007/s10811-014-0459-3
  31. Perez-Garcia O., Escalante F.M.E., de Bashan L.E., Bashan Y. // Water Res. 2011. V. 45. P. 11–36. https://doi.org/10.1016/j.watres.2010.08.037
  32. Saura P.P., Chabi M., Corato A., Cardol P., Remacle C. // Front. Plant Sci. 2022. P. 1–18. https://doi.org/10.3389/fpts.2022
  33. Rossoni A.W., Schönknecht G., Lee H.L. Rupp R.L., Flachbart S., Mettler-Altmann T. et al. // Plant Cell Physiol. 2019. V. 60. № 3. P. 702–712. https://doi.org/10.1093/pcp/pcy240
  34. Lin G.-H., Hsieh M.-C., Shu H.-Y. // Int. J. Mol. Sci. 2021. V. 22. P. 9921. https://doi.org/10.3390/ijms22189921
  35. Barbier G., Oesterhelt C., Larson M.D., Halgren R.G., Wilkerson C., Garavito R.M. et al. // Plant Physiol. 2005. V. 137. № 2. P. 460–474. https://doi.org/10.1104/pp.104.051169
  36. Curien G., Lyska D., Guglielmino E., Westhoff P., Janetzko J., Tardif M. et al. // New Phytologist. 2021. V. 231. P. 326–338. https://doi.org/10.1111/nph.17359
  37. Stadnichuk I.N., Rakhimberdieva M.G., Bolychevtseva Yu.V., Yurina N.P., Karapetyan N.V., Selyakh I.O. // Plant Sci. 1998. V. 136. № 1. P. 11–23.
  38. Oesterhelt C., Schmälzlin E., Schmitt J.M., Lokstein H. // Plant J. 2007. V. 51. P. 500–511. https://doi.org/10.1111/j.1365-313X.2007.03159.x
  39. Roth M.S., Westcott D.J., Iwai M., Niyogi K.N. // Commun. Biol. 2019. V. 2. P. 347. https://doi.org/10.1038/s42003-019-0577-1

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Growth of G. sulphuraria culture in the dark without ethanol (a) and with the addition of 0.1% ethanol (b). The mean values ​​± standard error of the mean (n = 3) are given. Coincidence of letter designations above the columns indicates the absence of statistically significant changes in the measurement series. Confidence interval P ≤ 0.05.

下载 (239KB)
3. Fig. 2. Changes in the rate of oxygen uptake during dark respiration of G. sulphuraria cells kept in the dark without (A) and with (B) the addition of 0.1% ethanol. * Statistically significant differences are indicated (see Methods).

下载 (136KB)
4. Fig. 3. Dynamics of G. sulphuraria culture growth in the light for 11 days without additives (A, photoautotrophic culture), in the presence of 0.1% ethanol (B) and in the presence of 0.1% glucose (C). Average values ​​and confidence intervals are given (n = 3). Coincidence of letter designations in each series means the absence of statistically significant differences; * Statistically significant differences are indicated.

下载 (137KB)
5. Fig. 4. Absorption spectra of G. sulphuraria cell culture on the 11th day of growth in the light (a), and the same spectra after subtracting the contribution from light scattering and normalizing to the maximum absorption of chlorophyll (b): 1 – photoautotrophic culture; 2 – photoheterotrophic culture containing 0.1% ethanol; 3 – photoheterotrophic culture containing 0.1% glucose (the ordinates of spectrum 3 at 750 nm are halved).

下载 (172KB)
6. Fig. 5. Oxygen consumption during dark respiration (a) and oxygen release during photosynthesis adjusted for O2 consumption during respiration (b) in G. sulphuraria cell culture during photoautotrophic growth (A), photoheterotrophic growth in the presence of 0.1% ethanol (B) or 0.1% glucose (C). *Statistically significant differences are noted.

下载 (396KB)
7. Fig. 6. Dynamics of consumption (%) of ethanol and glucose in the medium by G. sulphuraria cells: 1 – control, medium with 0.1% ethanol without cells; 2 – medium with 0.1% ethanol after growing G. sulphuraria in the dark; 3 – medium with 0.1% ethanol after growing G. sulphuraria in the light; 4 – medium with 0.1% glucose during light cell cultivation. Mean values ​​± standard deviation are given (n = 3).

下载 (85KB)
8. Fig. 7. Diagram reflecting the balance between respiration and photosynthesis (see text).

下载 (113KB)

版权所有 © Russian Academy of Sciences, 2024