Modulation of antioxidant enzyme activity levels and chaperone levels in different Cucurbitaceae genotypes under heat stress

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Factors determining plant resistance to abiotic stress include many stress defense systems. The most significant of them are the antioxidant and chaperone systems. However, the mechanisms of interaction between these systems have not been sufficiently studied. In this work, we studied the effect of heat stress on the activity levels of antioxidant enzymes (superoxide dismutase; SOD and catalase; CAT) and the levels of heat shock proteins (cytoplasmic HSP70 and chloroplast HSP70B) in the leaves of pumpkin seedlings of three genotypes (Cucurbita moschata, C. pepo, C. maxima) differing in their resistance to environmental stress. It was shown that under heat stress, the levels of CAT activity increased in all the studied genotypes. After heat stress, a noticeable drop (48.9%) in the level of CuZn-SOD activity was shown in C. moschata, compared with an increase in the enzyme activity by (2–14.6%) in the other two genotypes. The level of cytoplasmic HSP70 proteins decreased by 36, and chloroplast HSP70B by 34% in C. moschata plant cells after heat stress. In contrast, the level of cytoplasmic heat shock proteins HSP70 increased in C. pepo and C. maxima genotypes by 20 and 18%, respectively, and in the case of chloroplast HSP70B proteins, the increase was 43 and 10%. It was found that the modulation of the activity levels of CuZn-SOD (the main representative of the enzyme in the cell) and the levels of cytoplasmic HSP70 and chloroplast HSP70B chaperones in Cucurbitaceae genotypes is coordinated, indicating the interaction of these two cellular defense systems under heat stress. Thus, HSP70, HSP70B levels and CuZn-SOD activity levels are reliable early warning signals of heat stress, allowing the stress to be detected before it causes serious damage to the plant.

Full Text

Restricted Access

About the authors

N. P. Yurina

Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Author for correspondence.
Email: nyurina@inbi.ras.ru

Bakh Institute of Biochemistry

Russian Federation, Moscow, 119071

N. D. Murtazina

Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: nyurina@inbi.ras.ru

Bakh Institute of Biochemistry

Russian Federation, Moscow, 119071

References

  1. Mishra N., Jiang C., Chen L., Paul A., Chatterjee A., Shen G. // Front. Plant Sci. 2023. V. 14. 1110622. https://doi.org/10.3389/fpls.2023.1110622
  2. Miller G., Suzuki N., Ciftci-Yilmaz S., Mittler R. // Plant, Cell & Enviro. 2010. V. 33. P. 453–467. https://doi.org/10.1111/j.1365-3040.2009.02041.x
  3. Zandalinas S.I., Balfagón D., Arbona V., Gómez-Cadenas A. // Front. Plant Sci. 2017. V. 8. 953. https://doi.org/10.3389/fpls.2017.00953
  4. Katano K., Honda K., Suzuki N. // Int. J. Mol. Sci. 2018. V. 19. 3370. https://doi.org/10.3390/ijms19113370
  5. Arbona V., Hossain Z., López-Climent M.F., Pérez-Clemente R.M., Gómez-Cadenas A. // Physiol. Plant. 2008. V. 132. P. 452–466. https://doi.org/10.1111/j.1399-3054.2007.01029.x
  6. Wang C., Wen D., Sun A., Han X., Zhang J., Wang Z., Yin Y. // J. Cereal Sci. 2014. V. 60. P. 635-659. http://dx.doi.org/10.1016/j.jcs.2014.05.004
  7. Rahman M.A., Woo J.H., Song Y., Lee S.H., Hasan M.M., Azad M.A.K., Lee K.W. // Life. 2022. V. 12. 1426. https://doi.org/10.3390/life12091426
  8. Mishra P., Bhoomika K., Dubey R.S. // Protoplasma. 2013. V. 250. P. 3–19. https://doi.org/10.1007/s00709-011-0365-3
  9. Liu Z., Qiao D., Liu Z., Wang Z., Sun L., Li X. // Peer J. 2023. V. 11. e15177. http://doi.org/10.7717/peerj.15177
  10. Hu X., Liu R., Li Y., Wang W., Tai F., Xue R., Li C. // Plant Growth Regul. 2010. V. 60. P. 225–235. https://doi.org/10.1007/s10725-009-9436-2
  11. Юрина Н.П. // Молекулярная биология. 2023. Т. 57. C. 949–964. https://doi.org/10.31857/S00 М26898423060228
  12. Masand S., Yadav S.K. // Mol. Biol. Rep. 2016. V. 43. P.53–64. https://doi.org/10.1007/s11033-015-3938-y
  13. Cho E.K., Hong C.B. // Plant Сell Reports. 2006. V. 25. P. 349–358. https://doi.org/10.1007/s00299-005-0093-2
  14. Song A., Zhu X., Chen F., Gao H., Jiang J., Chen S. // Int. J. Mol. Sci. 2014. V. 15. P. 5063–5078. https://doi.org/10.3390/ijms15035063
  15. Augustine S.M., Cherian A.V., Syamaladevi D.P., Subramonian N. // Plant Cell Physiol. 2015. V. 56. P. 2368–2380. https://doi.org/10.1093/pcp/pcv142
  16. Pulido P., Llamas E., Rodriguez-Concepcion M. // Plant Signaling & Behavior. 2017. V. 12. e1290039. https://doi.org/10.1080/15592324.2017.1290039
  17. Devarajan A.K., Muthukrishanan G., Truu J., Truu M., Ostonen I., Kizhaeral S.S. et al. // Plants. 2021. V. 10. 387. https://doi.org/10.3390/plants10020387
  18. Mokhtar M., Bouamar S., Di Lorenzo A., Temporini C., Daglia M., Riazi A. // Molecules. 2021. V. 26. 3623. https://doi.org/10.3390/molecules26123623
  19. Vinayashree S., Vasu P. // Food Chem. 2021. V. 340. 128177. https://doi.org/10.1016/j.foodchem.2020.128177
  20. Круг Г. Овощеводство.Пер. с немецкого. М.: Колос, 2000. 572 с.
  21. Bradford M.M. // Anal. Biochem. 1976. V. 72. P. 248–254. https://doi.org/10.1006/abio.1976.9999
  22. Chankova S., Mitrovska Z., Miteva D., Oleskina Y.P., Yurina N.P. // Gene. 2013. V. 516. P. 184–189. https://doi.org/10.1016/j.gene.2012.11.052
  23. Gill S.S., Tuteja N. // Plant Physiol. Biochem. 2010. V. 48. P. 909–930. https://doi.org/10.1016/j.plaphy.2010.08.016
  24. Simova-Stoilova L., Vaseva I., Grigorova B., Demirevska. K., Feller U. // Plant Physiol. Biochem. 2010. V. 48. P. 200–206. https://doi.org/10.1016/j.plaphy.2009.11.003
  25. Sharma P., Dubey R.S. // J. Plant Physiol. 2005. V. 162. P. 854–864. https://doi.org/10.1016/j.jplph.2004.09.011
  26. Chen S., Liu A., Zhang S., Li C., Chang R., Liu D. // Plant Physiol. Biochem. 2013. V. 73. P. 245–253. https://doi.org/10.1016/j.plaphy.2013.10.002
  27. Driedonks N., Xu J., Peters J.L., Park S., Rieu I. // Front. Plant Sci. 2015. V. 6. 999. https://doi.org/10.1134/S0006297915100053 10.3389/fpls.2015.00999
  28. Fortunato S., Lasorella C., Dipierro N., Vita F., de Pinto M.C. // Antioxidants. 2023. V. 12. 605. https://doi.org/10.3390/antiox12030605
  29. Andrási N., Pettkó-Szandtner A., Szabados L. // J. Exp. Botany. 2021. V. 72. P. 1558–1575. https://doi.org/10.1093/jxb/eraa576
  30. Zhang L., Zhao H.K., Dong Q.L., Zhang Y.Y., Wang Y.M., Li H.Y. et al. // Front. Plant Sci. 2015. V. 6. 773. https://doi.org/10.3389/fpls.2015.00773
  31. Singh R.K., Jaishankar J., Muthamilarasan M., Shweta S., Dangi A., Prasad M. // Sci. Rep. 2016. V. 6. 32641. https://doi.org/10.1038/srep32641
  32. Kim T., Samraj S., Jiménez J., Gómez C., Liu T., Begcy K. // BMC Plant Biology. 2021. V. 21. P. 1–20. https://doi.org/10.1186/s12870-021-02959-x
  33. Liu J., Xu L., Shang J., Hu X., Yu H., Wu H., Lv W., Zhao Y. // Genet. Mol. Biol. 2021. V. 44. e20210035. https://doi.org/10.1590/1678-4685-GMB-2021-0035
  34. Davoudi M., Chen J., Lou Q. // Int. J. Mol. Sci. 2022. V. 23. 1918. https://doi.org/10.3390/ijms23031918
  35. Aina O., Bakare O., Fadaka A.O., Keyster M., Klein A. // Planta. 2024. V. 259. 60. http://doi.org/10.1007/s00425-024-04333-1
  36. Dumanović J., Nepovimova E., Natić M., Kuča K., & Jaćević V. // Front. Рlant Sci. 2021. V. 11. 552969. https://doi.org/10.3389/fpls.2020.552969

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Catalase activity in the leaves of plants of three genotypes of Cucurbitaceae after heat stress: 1 — control, 2 — 38°C. * — statistically significant differences are indicated (p < 0.05).

Download (95KB)
3. Fig. 2. Activity of total T-SOD (a), as well as CuZn-SOD (b) and Fe-SOD, Mn-SOD (c) in the leaves of plants of three genotypes of Cucurbitaceae after heat stress: 1 - control, 2 - 38°C. * - statistically significant differences are indicated (p < 0.05).

Download (292KB)
4. Fig. 3. Changes in the levels of heat shock proteins HSP70 of the cytoplasm (a) and HSP70B of the chloroplasts (b) in three Cucurbitaceae genotypes after heat stress (2) or without stress, control (1). * — statistically significant differences (p < 0.05) are indicated.

Download (182KB)
5. Fig. 4. Scheme of interaction of chaperone and antioxidant enzyme systems involved in stress response to heat stress. HSE (Heat Shock Elements) — heat shock elements in promoter regions of genes regulated by transcription factors Hsf; CAT — catalase; SOD — superoxide dismutase; POD — peroxidase; APX — ascorbate peroxidase; GR — glutathione reductase.

Download (283KB)

Copyright (c) 2025 Russian Academy of Sciences