Влияние минерального состава сульфидного сырья на процесс биовыщелачивания цветных металлов
- Авторы: Булаев А.Г.1, Муравьёв М.И.1, Меламуд В.С.1, Фомченко Н.В.1
-
Учреждения:
- Федеральный исследовательский центр “Фундаментальные основы биотехнологии” Российской академии наук
- Выпуск: Том 61, № 2 (2025)
- Страницы: 185-193
- Раздел: Статьи
- URL: https://permmedjournal.ru/0555-1099/article/view/687475
- DOI: https://doi.org/10.31857/S0555109925020087
- EDN: https://elibrary.ru/EOQXGV
- ID: 687475
Цитировать
Аннотация
Проведено исследование процессов биовыщелачивания никель-медной сульфидной руды, двух сульфидных медно-никелевых концентратов и медно-цинкового концентрата. Показано, что удельные скорости выщелачивания никеля мало различались для всех исследованных типов сырья. Так, для руды эта величина равна 59.3, для концентрата 1 — 58.7, а для концентрата 2 — 54.4 мг/(г·сут) соответственно. Содержание никеля снижалось с 4.6–7.5 (в исходном сырье) до 0.71–0.85% (продукт биовыщелачивания). Удельная скорость выщелачивания цинка из медно-цинкового концентрата составила 248.6 мг/(г·сут). Извлечение цинка достигало 98.5% при снижении его содержания с 7.4 в исходном концентрате до 0.21% в остатке после выщелачивания. Удельная скорость выщелачивания меди (7.3–14.8 мг/(г·сут)) была ниже по сравнению с никелем и цинком. При этом, в отличие от никеля и цинка, в остатках биовыщелачивания содержание меди увеличивалось: в случае медно-никелевых концентратов с 15.1 до 17.8% (концентрат 1) и с 19.1 до 19.7% (концентрат 2), а в случае медно-цинкового концентрата — с 10.1 до 16.1%. Таким образом, при биовыщелачивании всех исследованных концентратов в осадках образовывались медные концентраты с содержанием меди (16–19%), достаточно высоким, чтобы соответствовать стандартам для пирометаллургических переделов. Проведение сравнительного анализа процессов выщелачивания выбранного сырья позволит оценить перспективность применения исследуемого подхода для переработки продуктов обогащения и руд различного состава и с разным соотношением минералов цветных металлов.
Ключевые слова
Полный текст

Об авторах
А. Г. Булаев
Федеральный исследовательский центр “Фундаментальные основы биотехнологии” Российской академии наук
Автор, ответственный за переписку.
Email: bulaev.inmi@yandex.ru
Институт микробиологии им. С.Н. Виноградского
Россия, 119071, МоскваМ. И. Муравьёв
Федеральный исследовательский центр “Фундаментальные основы биотехнологии” Российской академии наук
Email: bulaev.inmi@yandex.ru
Институт микробиологии им. С.Н. Виноградского
Россия, 119071, МоскваВ. С. Меламуд
Федеральный исследовательский центр “Фундаментальные основы биотехнологии” Российской академии наук
Email: bulaev.inmi@yandex.ru
Институт микробиологии им. С.Н. Виноградского
Россия, 119071, МоскваН. В. Фомченко
Федеральный исследовательский центр “Фундаментальные основы биотехнологии” Российской академии наук
Email: bulaev.inmi@yandex.ru
Институт микробиологии им. С.Н. Виноградского
Россия, 119071, МоскваСписок литературы
- Brierley C., Brierley J. // Appl. Microbiol. Biotechnol. 2013. V. 97. № 17. P. 7543–7552. https://doi.org/10.1007/s00253-013-5095-3
- Batty J., Rorke G. // Hydrometallurgy. 2006. V. 83. № 1–4. P. 83–89. https://doi.org/10.1016/j.hydromet.2006.03.049
- Gentina J.C., Acevedo F. // Minerals. 2016. V. 6. № 1. 23. https://doi.org/10.3390/min6010023
- Johnson D. // Minerals. 2018. V. 8. № 8. 343. https://doi.org/10.3390/min8080343
- Fomchenko N., Muravyov M. // Minerals. 2020. V. 10. № 12. 1097. https://doi.org/10.3390/min10121097
- Kaksonen A.H., Lakaniemi A.-M., Tuovinen O.H. // J. Cleaner Prod. 2020. V. 264. 121586. https://doi.org/10.1016/j.jclepro.2020.121586
- Kaksonen A.H., Mudunuru B.M., Hackl R. // Hydrometallurgy. 2014. V. 142. P. 70–83. https://doi.org/10.1016/j.hydromet.2013.11.008
- Mahmoud A., Ceza P., Hoadley A.F.A., Contamin F., D’Hugues P. // Int. Biodeterior. Biodegrad. 2017. V. 119. P. 118–146. https://doi.org/10.1016/j.ibiod.2016.09.015
- Fomchenko N., Muravyov M. // Hydrometallurgy. 2019. V. 185. P. 82–87. https://doi.org/10.1016/j.hydromet.2019.02.002
- Esmailbagi M.R., Schaffie M., Kamyabi A., Ranjbar M. // Hydrometallurgy. 2018. V. 180. P. 139–143. https://doi.org/10.1016/j.hydromet.2018.07.020
- Fomchenko N., Muravyov M. // Appl. Biochem. Microbiol. 2017. V. 53. № 6. P. 715–718. https://doi.org/10.1134/S0003683817060059
- Fomchenko N., Uvarova T., Muravyov M. // Miner. Eng. 2019. V. 138. P. 1–6. https://doi.org/10.1016/j.mineng.2019.04.026
- Watling H.R. // Hydrometallurgy. 2008. V. 91. № 1–4. P. 70–88. https://doi.org/10.1016/j.hydromet.2007.11.012
- Sun J.Z., Wen J.K., Wu B., Chen B.W. // Minerals. 2020. V. 10. № 3. 289. https://doi.org/10.3390/min10030289
- Muravyov M.I., Fomchenko N.V. // Appl. Biochem. Microbiol. 2019. V. 55. № 4. P. 414–419. https://doi.org/10.1134/S0003683819040124
- Muravyov M., Panyushkina A., Bulaev A., Fomchenko N. // Minerals Engineering. 2021. V. 170. 107040. https://doi.org/10.1016/j.mineng.2021.107040
- Muravyov M., Panyushkina A., Fomchenko N. // Journal of Environmental Management. 2022. V. 318. 115587. https://doi.org/10.1016/j.jenvman.2022.115587
- Muravyov M., Panyushkina A. // Hydrometallurgy. 2023. V. 219. 106067. https://doi.org/10.1016/j.hydromet.2023.106067
- Muravyov M., Panyushkina A., Fomchenko N. // Minerals Engineering. 2022. V. 182. 107586. https://doi.org/10.1016/j.mineng.2022.107586
- Муравьёв М.И., Панюшкина А.Е., Меламуд В.С., Булаев А.Г., Фомченко Н.В. // Прикл. биохимия и микробиология. 2021. Т. 57. № 4. С. 380–387. https://doi.org/10.31857/S0555109921040115
- Фомченко Н.В., Панюшкина А.Е., Меламуд В.С., Муравьёв М.И. // Прикл. биохимия и микробиология. 2022. Т. 58. № 4. С. 382–387. https://doi.org/10.31857/S0555109922040043
- Fu K., Ning Y., Chen S., Wang Z. // Mineral Processing and Extractive Metallurgy (Trans. Inst. Min. Metall. C). 2016. V. 125. № 1. P. 1–4. https://doi.org/10.1179/1743285515Y.0000000013
- Zhao H., Wang J., Yang C., Hu M., Gan X., Tao L. et al. // Hydrometallurgy. 2015. V. 151. P. 141–150. https://doi.org/10.1016/j.hydromet.2014.11.009
- Kondrat’eva T.F., Pivovarova T.A., Tsaplina I.A., Fomchenko N.V., Zhuravleva A.E., Murav’ev M.I. et al. // Microbiol. 2012. V. 81. № 1. V. 1–24. https://doi.org/10.1134/S0026261712010080
- Panyushkina A.E., Tsaplina I.A., Kondrat’eva T.F., Belyi A.V., Bulaev A.G. // Microbiol. 2018. V. 87. № 3. P. 326–338. https://doi.org/10.1134/S0026261718030086
- Watling H.R., Collinson D.M., Fjastad S., Kaksonen A.H., Li J., Morris C., Perrot F.A., Rea S.M., Shiers D.W. // Miner. Eng. 2014. V. 58. P. 90–99. https://doi.org/10.1016/j.mineng.2014.01.022
- Mason L.J., Rice N.M. // Miner. Eng. 2002. V. 15. № 11. P. 795–808. https://doi.org/10.1016/S0892-6875(02)00118-8
- Sun J., Wen J., Wu B., Chen B. // Minerals. 2020. V. 10. № 3. 289. https://doi.org/10.3390/min10030289
- Watling H.R. // Hydrometallurgy. 2006. V. 84. № 1–2. P. 81–108. https://doi.org/10.1016/j.hydromet.2006.05.001
- Hedrich S., Joulian C., Graupner T., Schippers A., Guezennec A.G. // Hydrometallurgy. 2018. V. 179. P. 125–131. https://doi.org/10.1016/j.hydromet.2018.05.018
- Silverman M.P., Lundgren D.G. // J. Bacteriol. 1959. V. 77. № 5. P. 642–647. https://doi.org/10.1128/jb.77.5.642-647.1959
- Davis D.G., Jacobsen W.R. // Anal. Chem. 1960. V. 32. № 2. P. 215–217. https://doi.org/10.1021/ac60158a024
- Souza A.D., Pina P.S., Leao V.A., Silva C.A., Siqueira P.F. // Hydrometallurgy. 2007. V. 89. № 1–2. P. 72–81. https://doi.org/10.1016/j.hydromet.2007.05.008
- Wang Y., Chen X., Zhou H. // Biores. Technol. 2018. V. 265. P. 581–585. https://doi.org/10.1016/j.biortech.2018.07.017
- Riekkola-Vanhanen M., Heimala S. // Proceedings of an International Biohydrometallurgy Symposium. 1993. V. 1. P. 561–570.
Дополнительные файлы
