Structural-Phase States in the Head of Special-Purpose Rails after Long-Term Operation

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Transmission electron microscopy methods are used to analyze the changes in the structure, phase composition, and dislocation substructure in the head of long differentially hardened special-purpose DT400IK rails made of E90KhAF steel along the radius of fillet rounding at the surface and at a distance of 2 and 10 mm from it after a passed tonnage of 187 mln t during field tests. Bend extinction contours, which indicate an elastic-stressed state of the rail head as a result of long-term operation, are found to form. The sources of lattice curvature torsion are revealed. The mechanisms of destruction of cementite lamellae and repeated precipitation of carbide-phase nanoparticles are considered.

Авторлар туралы

Yu. Ivanov

Institute of High-Current Electronics, Siberian Branch, Russian Academy of Sciences

Email: gromov@physics.sibsiu.ru
Tomsk, Russia

M. Porfir'ev

Siberian State Industrial University

Email: gromov@physics.sibsiu.ru
Novokuznetsk, Russia

V. Gromov

Siberian State Industrial University

Email: gromov@physics.sibsiu.ru
Novokuznetsk, Russia

R. Kryukov

Siberian State Industrial University

Email: gromov@physics.sibsiu.ru
Novokuznetsk, Russia

Yu. Shlyarova

Siberian State Industrial University

Хат алмасуға жауапты Автор.
Email: gromov@physics.sibsiu.ru
Novokuznetsk, Russia

Әдебиет тізімі

  1. Yuriev, A.A. Structure and properties of lengthy rails after extreme long-term operation / A.A. Yuriev, Yu.F. Ivanov, V.E. Gromov, Yu.A.Rubannikova, M.D. Starostenkov, P.Y. Tabakov. - Millersville (USA): Materials Research Forum LLC, 2021. 190 p.
  2. Gromov, V.E. Microstructure of quenched rails / V.E. Gromov, A.B. Yuriev, K.V. Morozov, Y.F. Ivanov. - [S.l.]: Cambridge, ISP Ltd, 2016. 153 p.
  3. Ivanisenko, Yu. Shear-induced a ® g transformation in nanoscale Fe-C composite / Yu. Ivanisenko, I. MacLaren, X. Sauvage, R.Z. Valiev, H.-J. Fecht // Acta Materialia. 2006. V.54. P.1659-1669. https://doi.org/10.1016/j.actamat.2005.11.034.
  4. Lojkowski, W. The mechanical properties of the nanocrystalline layer on the surface of railway tracks / W. Lojkowski, Y. Millman, S.I. Chugunova, I.V. Goncharova, M. Djahanbakhsh, G. Bˆrkle, H.-J. Fecht // Mater. Sci. Eng.: A. 2001. V.303. №1-2. P.209-215. https://doi.org/10.1016/S0921-5093(00)01948-1.
  5. Lojkowski, W. Nanostructure formation on the surface of railway tracks / W. Lojkowski, M. Djahanbakhsh, G. Bˆrkle, S. Gierlotka, W. Zielinski, H.-J. Fecht // Mater. Sci. Eng.: A. 2001. V.303. P.197-208. https://doi.org/10.1016/S0921-5093(00)01947-X.
  6. Ivanisenko, Yu. Microstructure modification in the surface layers of railway rails and wheels: effect of high strain rate deformation / Yu. Ivanisenko, H.J. Fecht // Steel Tech. 2008. V.3. №1. P.19-23.
  7. Takahashi, J. Atom probe tomography analysis of the white etching layer in a rail track surface /j. Takahashi, K. Kawakami, M. Ueda // Acta Materialia. 2010. V.58. P.3602-3612. https://doi.org/10.1016/j.actamat.2010.02.030.
  8. Benol^t, D. The tridimensional gradient of microstructure in worn rails - Experimental characterization of plastic deformation accumulated by RCF / D. Benol^t, B. Salima, R. Marion // Wear. 2017. V.392, 393. P.50-59.
  9. Benol^t, D. Multiscale characterization of head check initiation on rails under rolling contact fatigue: Mechanical and microstructure analysis / D. Benool^t, B. Salima, R. Marion // Wear. 2016. V.366, 367. P.383-391.
  10. Chen, H. Understanding cementite dissolution in pearlitic steels subjected to rolling-sliding contact loading: A combined experimental and theoretical study / Chen H., Ji Y., Zhang C., Liu W., Yang Z., Chen L.-Q., Chen L. // Acta Materialia. 2017. V.141. P.193-205.
  11. Ma, L. Fatigue crack growth and damage characteristics of high-speed rail at low ambient temperature / Ma L., Guo J., Liu Q.Y., Wang W.J. // Eng. Failure Analysis. 2017. V.82. P.802-815.
  12. Masoumi, M. Role of microstructure and crystallographic orientation in fatigue crack failure analysis of a heavy haul railway rail / M. Masoumi, A. Sinatora, H. Goldenstein // Eng. Failure Analysis. 2019. V.96. P.320-329.
  13. Turan, M.E. Residual stress measurement by strain gauge and X-ray diffraction method in different shaped rails / M.E. Turan, F. Aydin, Y. Sun, M. Cetin // Eng. Failure Analysis. 2019. V.96. P.525-529.
  14. Shi, X.-J. Wear behavior of high-speed wheel and rail steels under various hardness matching / Shi X.-J., Zhang X.-X., Diao G.-J., Yan Q.-Z. //j. Mater. Eng. Performance. 2022.
  15. Cookson, J.M. The role of the environment in the rolling contact fatigue cracking of rails /j.M. Cookson, P.J. Mutton // Wear. 2011. V.271. P.113-119.
  16. Rui, P. Investigation into the microstructure evolution and damage on rail at curved tracks / P.Rui, C. Yuda, L. Hu, E. Shiju, R.Ruiming // Wear. 2022. V.504, 505. Art.204420.
  17. Yoshikazu, K. Influence of a decarburised layer on the formation of microcracks in railway rails: On-site investigation and twin-disc study / K. Yoshikazu, U. Naotaka, L. Hu, M. Motohide, N. Shoji // Wear. 2022. V.504, 505. Art.204427.
  18. Miranda, R.S. Fatigue and wear behavior of pearlitic and bainitic microstructures with the same chemical composition and hardness using twin-disc tests / R.S. Miranda, A.B. Rezende, S.T. Fonseca, F.M. Fernandes, A. Sinatora, P.R. Mei // Wear. 2022. V.494, 495. Art.204253.
  19. Michaёl, S. On the genesis of squat-type defects on rails - toward a unified explanation / S. Michaёl // Wear. 2021. V.478, 479. Art.203906.
  20. Liang, Z.Comparison of the damage and microstructure evolution of eutectoid and hypereutectoid rail steels under a rolling-sliding contact / Liang Z., Wei B., Zhenyu H., Wenjian W., Yue H., Haohao D., Roger L., Enrico M., Qiyue L., Jun G. // Wear. 2022. V.492, 493. Art.204233.
  21. Громов, В.Е. Деформационное преобразование структуры и фазового состава поверхности рельсов при сверхдлительной эксплуатации / В.Е. Громов, Ю.Ф. Иванов, Р.В. Кузнецов, А.М. Глезер, Ю.А. Шлярова, О.А. Перегудов // Деформация и разрушение матер. 2022. №1. С.35-39. doi: 10.31044/1814-4632-2022-1-35-39.
  22. Кузнецов, Р.Е. Градиенты структуры, фазового состава и дислокационной субструктуры рельсов при сверхдлительной эксплуатации / Р.Е. Кузнецов, В.Е. Громов, Ю.Ф. Иванов, В.Е. Кормышев, Ю.А. Шлярова, А.А. Юрьев // Изв. Алтайского гос. ун-та. 2022. №1. С.44-50. https://doi.org/10.14258/izvasu(2022)1-06
  23. Григорович, К.В. Формирование тонкой структуры перлитной стали при сверхдлительной пластической деформации / К.В. Григорович, В.Е. Громов, Р.В. Кузнецов, Ю.Ф. Иванов, Ю.А. Шлярова // Доклады Российской академии наук. Физика, технические науки. 2022. Т.503. С.8-12. doi: 10.31857/S2686740022020079.
  24. Egerton, F.R. Physical principles of electron microscopy / F.R. Egerton. - Basel: Springer International Publishing, 2016. 196 p.
  25. Kumar, C.S.S.R. Transmission electron microscopy. Characterization of nanomaterials / C.S.S.R. Kumar. - N.Y.: Springer, 2014. 717 p.
  26. Carter, C.B. Transmission electron microscopy / C.B. Carter, D.B. Williams. - Berlin: Springer International Publishing, 2016. 518 p.
  27. Конева, Н.А. Дислокационная структура и физические механизмы упрочнения металлических материалов / Н.А. Конева, Э.В. Козлов // Перспективные материалы. Структура и методы исследования (учеб. пособ.) / под ред. Д.Л. Мерсона. - Тула: ТГУ; М.: МИСиС, 2006. С.267-320.
  28. Gavriljuk, V.G. Decomposition of cementite in pearlitic steel due to plastic deformation / V.G. Gavriljuk // Mater. Sci. Eng. A. 2003. V.345. P.81-89. https://doi.org/10.1016/S0921-5093(02)00358-1
  29. Цементит в углеродистых сталях / под ред. В.М. Счастливцева. - Екатеринбург: Изд-во УМЦ ЦПИ, 2017. 380 с.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2023