Greenhouse gases balance and climate change: role of permafrost degradation in the Arctic

Cover Page

Cite item

Full Text

Abstract

One of the most prominent problems of modern geochemistry and climatology is the understanding of the patterns of migration of the main greenhouse gases, carbon dioxide (CO2) and methane (CH4). The purpose of this work is a brief review of the widely accepted concept of the dominant role of the anthropogenic factor in climate change, which is considered in the paleo-context of changes in natural climate cycling over the past hundreds of thousands of years, and in present time. It is shown that to understand the functioning of the climate system, it is necessary to take into account the geological factor – changes in the state of terrestrial and subsea permafrost: the huge reservoirs of ancient carbon, which is included in biogeochemical cycles due to permafrost degradation in warm geological epochs. This leads to imbalance in the carbon cycling, which manifests itself in massive emissions of CO2 and CH4 into the atmosphere. During cold geological epochs, carbon accumulates in permafrost, which stores amounts of carbon exceeding the carbon exchange between atmosphere, biosphere, land and ocean. Considering the Arctic region as the key climate “kitchen” we state that present time is characterized by unique long-lasting warming after the Holocene optimum, which occurred in the northern hemisphere approximately 5–6 thousand years ago. It contradicts with the Milankovich’ 105-kyrs cycling: after the Holocene optimum, the geological ice-epoch should have occurred, which should have led to about 100-meters sea level lowering and the transformation of the shallow Arctic shelf into land. However, warming has continued and the level of the World Ocean continues to rise, which has already led to an extended high sea level on the Arctic shelf – unique in geological history. This caused the lasting contact of relatively warm bottom waters (~(–1) °C) and frozen sediments (~(–25) °C) of the Arctic shelf for 5–6 thousand years longer than in previous warm geological epochs, which led to the progressive degradation of subsea permafrost, formation of deep or through taliks (zones of melted permafrost) and destabilization of Arctic shallow hydrates. It is shown that the increasing runoff of Siberian rivers, mobilization, transport, and transformation of terrestrial organic matter in the Arctic land–shelf system determines the sedimentation and biogeochemistry of the East Siberian Arctic Shelf – the broadest and shallowest shelf in the World Ocean, which makes up more than 70% of the Northern Sea Route area. This review paper presents selected key results obtained by the authors and their colleagues over the past 30 years, and identifies a number of problems facing modern climatology.

Full Text

Restricted Access

About the authors

Igor P. Semiletov

V. I. Il’ichev Pacific Oceanological Institute, FEB RAS; Sakhalin State University/SakhTECH

Author for correspondence.
Email: ipsemiletov@gmail.com
ORCID iD: 0000-0003-1741-6734

Corresponding Member of RAS, Doctor of Sciences in Geography, International Center of the Far-Eastern and Arctic Seas (named by admiral S.O. Makarov)

Russian Federation, Vladivostok; Yuzhno-Sakhalinsk

Natalia E. Shakhova

V. I. Il’ichev Pacific Oceanological Institute, FEB RAS; M. A. Sadovskу Institute of Geosphere Dynamics

Email: nataliaeshakhova@gmail.com

Doctor of Sciences in Geology and Mineralogy

Russian Federation, Vladivostok; Moscow

References

  1. Barnola J. M., Raynaud D., Korotkevich Ye.S., Lorius C. Vostok ice core provides 160,000 year record of atmospheric CO 2 . Nature. 1987;329:408–414.
  2. Chappellaz J., Barnola J. M., Raynaud D., Korotkevich Ye. S., Lorius C. Ice core record of atmospheric methane over the past 160,000 years. Nature. 1990;345:127–131.
  3. Jouzel J., Lorius C., Petit J. R., Genthon C., Barkov N. I., Kotlyakov V. M., Petrov V. M. Vostok ice core: a continuous isotope temperature record over the last climatic cycle (160,000). Nature. 1987;329(6138):403–408.
  4. Jouzel J., Barkov N. I., Barnola J. M. Bender M., Chappelaz J., Genthon G., Kotlyakov V. M., Lipenkov V., Lorius C., Petit J. R., Raynaud D., Raisbeck G., Ritz C., Sowers T., Stivenard M., Yiou F., Yiou P. Extending the Vostok ice-core record of paleoclimate to the penultimate glacial period. Nature. 1993;364:407–412.
  5. Lorius C., Barkov N. I., Jouzel J., Korotkevich Ye.S., Kotlyakov V. M., Raynaud D. Antarctic Ice Core: CO 2 and climatic change over the last climatic cycle. EOS. 1988;69(26):681–684.
  6. Lorius C., Jouzel J., Raynaud D., Hansen J., Letreut H. The ice-core record: climate sensitivity and future greenhouse warming. Nature. 1990;347:139–145.
  7. Serreze M. C., Francis J. The Arctic amplification debate. Climatic Change. 2006;76:241–264. doi: 10.10007/s10584-005-9017.
  8. ACIA (Arctic Climate Impact Assessment): Overview report. Cambridge Univ. Press; 2004. 140 p.
  9. IPCC, 2001: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom; New York, NY, USA: Cambridge University Press; 2001. 881 p.
  10. Bydiko M. I. Climate in the past and present, Leningrad: Hydromet Press; 1980. 351 p. (In Russ.).
  11. Imbri J., Imbri K. P. Mystery of ice epochs. Мoscow: Prohress Press; 1988. 263 p. (In Russ).
  12. Vernadsky V. I. Chemical structure of the Earth biosphere and surrounding planets. Мoscow: Nauka Press; 1965. 373 p. (In Russ.).
  13. Lewis S. L., Maslin M. A. Defining the Anthropocene. Nature. 2015;519:171–180.
  14. IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change IPCC. Geneva, Switzerland; 2023. P. 35–115. doi: 10.59327/IPCC/AR6-9789291691647.
  15. Tarnocai C., Canadell J. G., Schuur E. A.G., Kuhry P., Mazhitova G., Zimov S. Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Сycle. 2009;23. GB2023. doi: 10.1029/2008GBO03327.
  16. Semiletov I. P., Shakhova N. E., Sergienko V. I., Pipko I. I., Dudarev O. On Carbon Transport and Fate in the East Siberian Arctic Land-Shelf-Atmosphere System. Environment Research Letters. 2012;7. doi: 10.1088/1748-9326/7/1/015201.
  17. Shakhova N., Semiletov I., Chuvilin E. Understanding the Permafrost–Hydrate System and Associated Methane Releases in the East Siberian Arctic Shelf. Geosciences. 2019;9(6).
  18. Soloviev V. A. (ed.). Cryothermy and natural hydrates in the Arctic Ocean. Leningrad: Sevmorgeologiya Press; 1987. 150 p.
  19. Gramberg I. S., Kulakov Yu. N., Pogrebitsky Yu. E., Sorokov D. S. Arctic oil and gas super basin. In: X World Petroleum Congress. London; 1983. P. 93–99.
  20. Shakhova N., Semiletov I., Leifer I., Salyuk A., Rekant P., Kosmach D. Geochemical and geophysical evidence of methane release over the East Siberian Arctic Shelf. Journal of Geophysical Research: Oceans. 2010;115(C8).
  21. Shakhova N. E., Semiletov I. P. Methane Hydrate Feedbacks. In: Martin Sommerkorn & Susan Joy Hassol (eds.). Arctic Climate Feedbacks: Global Implications, Published by WWF International Arctic Programme August; 2009. P. 81–92. ISBN: 978-2-88085-305-1.
  22. Zavarzin G. A., Clark U. Biosphere and climate: biologist’s view. Priroda. 1987;(6):65–77. (In Russ.).
  23. Canadell J. G., Raupach M. R. Land Carbon Cycle Feedbacks. In: Martin Sommerkorn & Susan Joy Hassol (eds.). Arctic Climate Feedbacks: Global Implications, Published by WWF International Arctic Programme August; 2009. P. 69–80. ISBN: 978-2-88085-305-1.
  24. Genthon C., Barnola J. M., Raynaud D., Lorius C., Jouzel J., Barkov N. I., Korotkevich Ye. S., Kotlyakov V. M. Vostok ice core: climatic response to CO 2 and orbital forcing changes over the last clymatic cycle. Nature. 1987;329(6138):414–418.
  25. Petit J., Jouzel J., Raynaud D. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature. 1999;399:429–436. doi: 10.1038/20859.
  26. Rigby M., Prinn R. G., Fraser P. J. et al. Renewed growth of atmospheric methane. Geophys. Res. Lett. 2008;35. L22805. doi: 10.1029/2008GL036037.
  27. Semiletov I. P., Zimov S. A., Voropaev Yu. V., Davydov S. P., Barkov N. I., Gusev A. N., Lipenkov V. Ya. Atmospheric methane in past and present. Trans. (Doklady) Russian Acad. Sci. 196;345(5): 155–159.
  28. Semiletov I. P., Pipko I. I., Pivovarov N. Ya., Popov V. V., Zimov S. A., Voropaev Yu. V., Daviodov S. P. Atmospheric carbon emission from North Asian Lakes: a factor of global significance. Atmospheric Environment. 1996;30(10/11):1657–1671.
  29. Semiletov I. P. On aquatic sources and sinks of CO 2 and CH 4 in the Polar Regions. J. Atmos. Sci. 1999;56:286–306.
  30. Zimov S. A., Voropaev Yu. V., Semiletov I. P. et al. North Siberian Lakes: a methane source fueled by Pleistocene carbon. Science. 1997;277:800–802.
  31. Shakhova N., Semiletov I., Salyuk A., Yusupov V., Kosmach D., Gustafsson Ö. Extensive Methane Venting to the Atmosphere from Sediments of the East Siberian Arctic Shelf. Science. 2010;327(5970):1246–1250.
  32. Shakhova N. E., Alekseev V. A., Semiletov I. P. Predicted methane emission on the East Siberian shelf. Doklady Earth Sciences. 2010;430(2):190–193.
  33. Seneviratne S. I., Nicholls N., Easterling D. et al. Changes in climate extremes and their impacts on the natural physical environment. In: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge, UK; New York, NY, USA: Cambridge University Press; 2012. P. 109–230.
  34. Dutton A., Carlson A. E., Long A. J., Milne G. A., Clark P. U., DeConto R., Horton B. P., Rahmstorf S., Raymo M. E. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science. 2015;349. aaa4019. doi: 10.1126/science.aaa4019.
  35. Solomon S., Plattner G.-K., Knutti R., Friedlingstein P. Irreversible climate change due to carbon dioxide emissions. PNAS. 2009;106(6):1704–1709.
  36. Semiletov I. P. Ancient Ice Air Content of the Vostok Ice Core. In: Oremland S. (ed.). Biogeochemistry of Trace Gases. New York: Chapman and Hall Inc.; 1993. P. 46–59.
  37. Semiletov I. P. Carbon cycle and global changes in the past and present. In: Chemistry of seas and oceans. Moscow: Nauka Press; 1995. P. 130–154. (In Russ.).
  38. Kennett J. P., Cannariato K. G., Hendy I. L., Behl R. J. Methane hydrates in Quaternary Climate Change. Washington, D.C.: AGU; 2003. 317 p.
  39. Kvenvolden K. A. Gas hydrates: Geological perspective and global change. Rev. Geophys. 1993;31:173–187.
  40. Golytsin G. S., Ginsburg A. S. Estimation of possible abrupt methane warming 55 mln years in the past. Doklady Academy of Sciences. 2007;413(6). (In Russ.).
  41. Chappellaz J., Blunier T., Raynaud D., Barnola J. M., Schwander J., Stauffer B. Synhronous changes in atmospheric CH 4 and Greenland climate between 40 and 8 kyr BP. Nature. 1993;336:443–445.
  42. Etheridge D. M., Steele L. P., Francey R. J., Langenfelds R. L. Atmospheric methane between 1000 A.D. and present: Evidence of anthropogenic emissions and climatic variability. Journal of Geophysical Research: Atmospheres. 1998;103(D13):15979–15993.
  43. Sapart C. J., Monteil G., Prokopiou M., van de Wal R. S. W., Kaplan J. O., Sperlich P. et al. Natural and anthropogenic variations in methane sources during the past two millennia. Nature. 2012;490(7418):85–89.
  44. Rasmussen R. A., Khalil M. A. K. Atmospheric methane in the recent and ancient atmospheres: concentrations, trends and interhemispheric gradient. J .Geoph. Res. 1984;89(D7):11599–11605.
  45. Chappellaz J. et al. Changes in atmospheric CH4 gradient between Greenland and Antarctica during Holocene. J. Geophys. Res. 1997;102(D13):15987–15997.
  46. Dallenbach A., Blunier T., Fluckiger J., Stauffer B. Changes in the atmospheric CH 4 gradient between Greenland and Antactica during the Last Glacial and the transition to the Holocene. Geophys. Res. Lett. 2000;27(7):1005–1008.
  47. Cuffey K. M., Clow G. D., Alley R. B., Stuiver M., Waddington E. D., Saltus R. W. Large Arctic Temperature Change at the Wisconsin-Holocene Glacial Transition. Science. 1995;270:455–458.
  48. Romanovskii N. N., Gavrilov A. V., Tumskoy V. E. Lake thermokarst and its role in formation of the coastal zone of the Laptev Sea shelve. Earth Cryosphere. 1999;3(3):79–91. (In Russ.).
  49. Romanovskii N. N., Hubberten H. W., Gavrilov A. V., Eliseeva A. A., Tipenko G. S. Offshore permafrost and gas hydrate stability zone on the shelf of East Siberian Seas. Geo-Marine Letters. 2005;25(2):167–182.
  50. Feely R. A., Sabine C. L., Takahashi T., Wanninkhof R. Uptake and Storage of Carbon Dioxide in the Ocean: the Global CO 2 Survey. Oceanography. 2001;14(4):18–32.
  51. Takahashi T., Sutherland S. C., Sweeney C., Poisson A., Metzl N., Tillbrook B., Bates N., Wanninkhof R., Feely R. A., Sabine C., Olafsson J., Nojiri Y. Global sea-air CO 2 flux based on climatological surface ocean pCO 2 , and seasonal biological and temperature effects. Deep-Sea Res. 2002;2(49):1601–1622.
  52. Shakhova N., Semiletov I., Panteleev G. The distribution of methane on the Siberian Arctic shelves: Implications for the marine methane cycle. Geophysical Research Letters. 2005;32(9).
  53. Shakhova N., Semiletov I., Leifer I., Sergienko V., Salyuk A., Kosmach D. et al. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. Nature Geoscience. 2014;7(1):64–70.
  54. Wild B., Shakhova N., Dudarev O., Semiletov I. et al. Organic matter composition and greenhouse gas production of thawing subsea permafrost in the Laptev Sea. Nature Communications. 2022;13. 5057. doi: 10.1038/s41467-022-32696-0.
  55. Sapart C. J., Shakhova N., Semiletov I., Jansen J., Szidat S., Kosmach D., Dudarev O., van der Veen C., Egger M., Sergienko V., Salyuk A.,Tumskoy V., Tison J. L., Rockmann T. The origin of methane in the East Siberian Arctic Shelf unraveled with triple isotope analysis. Biogeosciences. 2017;14(9): 2283–2292.
  56. Shakhova N., Semiletov I., Sergienko V., Lobkovsky L., Yusupov V., Salyuk A. et al. The East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2015;373(2052). 20140451.
  57. Shakhova N., Semiletov I., Gustafsson O., Sergienko V., Lobkovsky L., Dudarev O. et al. Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf. Nature Communications. 2017;8(1). 15872.
  58. Romankevich E. A. Geochemistry og organic matter in the ocean. Мoscow: Nauka Press; 1977. 256 p. (In Russ.).
  59. Romankevich E. A., Vetrov A. A. Carbon cycle in the Russian arctic seas. Мoscow: Nauka Press; 2001. 302 p. (In Russ.).
  60. Romankevich E. A., Vetrov A. A. Carbon in the World Ocean. Мoscow: GEOS; 2021. 352 p. ISBN978-5-89118-835-8. doi: 10.34756/GEOS.2021.16.37857.
  61. Gramberg I. S. et al. (eds.). Arctic on the threshold of the third millennium. Sankt Petersburg: Nauka Press; 2000. 247 p. (In Russ.).
  62. Stein R., Macdonald R. W. (eds.). The organic carbon cycle in the Аrctic ocean, Berlin; Heidelberg; New York: Springler-Verlag; 2003. 363 p.
  63. Bordovsky O. K., Semiletov I. P. Carbon exchange between the bottom water and sediments in the Sea of Okhotsk. Doklady AN SSSR. 1989;306(3):697–700. (In Russ.).
  64. Pipko I., Semiletov I., Tishchenko P., Pugach S., Christensen J. Carbonate Chemistry dynamics in Bering Strait and the Chukchi Sea. Progress in Oceanography. 2002;55:77–94.
  65. Pipko I. I., Pugach S. P., Semiletov I. P., Anderson L. G., Shakhova N. E., Gustafsson Ö., Repina I. A., Spivak E. A., Charkin A. N., Salyuk A. N., Shcherbakova K. P., Panova E. V., Dudarev O. V. The dynamics of the carbon dioxide system in the outer shelf and slope of the Eurasian Arctic Ocean. Ocean Sci. 2017;13:997–1016.
  66. Pipko I. I., Semiletov I. P., Pugach S. P. On the carbonate system of the East Siberian Sea. Doklady Akademii Nauk. 2005;402(3):398–401. (In Russ.).
  67. Semiletov I. P. Destruction of the coastal permafrost ground as an important factor in biogeochemistry of the Arctic Shelf waters. Trans. (Doklady) Russian Acad. Sci. 1999;368:679–682.
  68. Semiletov I. P., Makshtas A. P., Akasofu S., Andreas E. Atmospheric CO 2 balance: The role of Arctic sea ice. Geophysical Research Letters. 2004;1(5). L05121. doi: 10.1029/2003GL017996.
  69. Bates N. Marine Carbon Cycle Feedbacks. In: Martin Sommerkorn & Susan Joy Hassol (eds.). Arctic Climate Feedbacks: Global Implications, Published by WWF International Arctic Programme August; 2009. P. 55–68. ISBN: 978-2-88085-305-1.
  70. Semiletov I., Dudarev О., Luchin V., Charkin A., Shin K., Tanaka N. The East-Siberian Sea as a transition zone between the Pacific origin water and local shelf water. Geophysical Research Letters. 2005;32. L10614. doi: 10.1029/2005GL022490.
  71. Rusanov I. I., Savvichev A. S., Zasko D. N., Sigalevich P. A., Pipko I. I., Pugach S. P., Pimenov N. V., Semiletov I. P. Primary production and microbial heterotrophy in the Siberian arctic seas, Bering Strait, and Gulf of Anadyr, Bering Sea. Estuarine, Coastal and Shelf Science. 2024;299. 108673.
  72. Semiletov I., Pipko I., Repina I., Shakhova N. Carbonate dynamics and carbon dioxide fluxes across the atmosphere-ice-water interfaces in the Arctic Ocean Pacific sector of the Arctic. Journal of Marine Systems. 2007;66:204–226.
  73. Semiletov I., Pipko I., Gustafsson Ö., Anderson L. G., Sergienko V., Pugach S., Dudarev O., Charkin A., Gukov A., Bröder L., Andersson A., Spivak E., Shakhova N. Extreme acidification in the East Siberian Arctic Shelf driven by a permafrost-released carbon translocation and seawater freshening. Nature Geoscience. 2016;9:361–365. doi: 10.1038/NGEO2695.
  74. Pugach S. P., Pipko I. I., Shakhova N. E., Shirshin E. A., Perminova I. V., Gustafsson Ö. et al. Dissolved organic matter and its optical characteristics in the Laptev and East Siberian seas: spatial distribution and interannual variability (2003–2011). Ocean Sci. 2018;14(1):87–103.
  75. Macdonald R. W., Anderson L. G., Christensen J. P., Miller L. A., Semiletov I. P., Stein R. The Arctic Ocean: budgets and fluxes. In: K.-K. Liu, L. Atkinson, R. Quinones, L. Talaue-McManus (eds.). Carbon and Nutrient Fluxes in Continental Margins: A Global Synthesis. Springer-Verlag; 2008. P. 291–303.
  76. Semiletov I. P., Shakhova N. E., Pipko I. I., Pugach S. P., Charkin A. N., Dudarev O. V., Kosmach D. A., Nishino S. Space-time dynamics of carbon stocks and environmental parameters related to carbon dioxide emissions in the Buor-Khaya Bay of the Laptev Sea. Biogeosciences. 2013;10:5977–5996. doi: 10.5194/bg-10-5977-2013.
  77. Belzil C., Roesler C. S., Christensen J. P., Shakhova N., Semiletov I. Fluorescence measured using the WETStar DOM fluorometer as a proxy for dissolved matter absorption. Estuarine Coastal and Shelf Science. 2006;67:441–449.
  78. Kaltin S., Anderson L. G. Uptake of atmospheric carbon dioxide in Arctic shelf seas: evaluation of the relative importance of processes that influence pCO 2 in water transported over the Bering-Chukchi Sea shelf. Mar. Chem. 2005;94:67–79.
  79. Gosink T. A., Pearson J. G., Kelley J. J. Gas movement through sea ice. Nature. 1976;263:41–42.
  80. Kelley J. J., Gosink T. A. Gases in Sea Ice. Final Report: Contract N000 14-76C-0331, Institute of Marine Science, University of Alaska. Fairbanks, Alaska; 1979. 107 p.
  81. Semiletov I. P. On seasonal variability of hydrocarbon gases and dissolved oxygen in the Uglovoe Bay, the Japan Sea Proc. Far-Eastern Hydrometeorological Institute. 1987;131:80–84. (In Russ.).
  82. Alling V., Sanchez-Garcia L., Porcelli D., Pugach S., Vonk J., van Dongen B., Mörth C. M., Anderson L. G., Sokolov A., Andersson P., Humborg C., Semiletov I., Gustafsson Ö. Non-conservative behavior of dissolved organic carbon across the Laptev and East Siberian seas. Global Biogeochemical Cycles. 2010;24. GB4033.
  83. Vonk J. E., Sánchez-García L., van Dongen B. E., Alling V., Kosmach D., Charkin A., Semiletov I. P., Dudarev O. V., Shakhova N., Roos P., Eglinton T. I., Andersson A., Gustafsson Ö. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia. Nature. 2012;489(7414):137–140.
  84. Semiletov I. P., Pipko I. I., Shakhova N. E., Dudarev O. V., Pugach S. P., Charkin A. N., McRoy C.P., Kosmach D., Gustafsson Ö. Carbon transport by the Lena River from its headwaters to the Arctic Ocean, with emphasis on fluvial input of terrestrial particulate organic carbon vs. carbon transport by coastal erosion. Biogeosciences. 2011;8:2407–2426.
  85. Guo L., Semiletov I., Gustafsson O., Ingri J., Anderson P., Dudarev O., White D., Characterization of Siberian Arctic coastal sediments: Implications for terrestrial carbon export. Global Biogeochemical Cycles. 2004;18. GB1036. DOI: 10 1029/2003 GBO 02087.
  86. Vetrov A. A., Semiletov I. P., Dudarev O. V., Peresipkin V. I., Charkin A. N. Study of composition and origin of organic matter in the East-Siberian Sea bottom sediments. Geokhimiya (Geochemistry). 2008;3:183–195. (Translated in English).
  87. Pipko I. I., Semiletov I. P., Tischenko P. Ya., Pugach S. P., Savelieva N. I. Carbon System Parameters Variability in the East-Siberian Sea Coastal-Shelf Zone during Fall Season. Okeanologiya (Oceanology). 2008;48(1):59–72. (Translated in English).
  88. Pipko I. I., Semiletov I. P., Pugach S P., Wáhlström I., Anderson L. G. Interannual variability of air-sea CO 2 fluxes and carbon system in the East Siberian Sea. Biogeosciences. 2011;8:1987–2007. doi: 10.5194/bg-8-1987-2011.
  89. Anderson L. G., Jutterström S., Hjalmarsson S., Wahlström I., Semiletov I. P. Out-gassing of CO 2 from Siberian Shelf seas by terrestrial organic matter decomposition. Geophysical Research Letters. 2009;36. L20601. doi: 10.1029/2009GL040046.
  90. Semiletov I. P., Pipko I. I. Sinks and sources of carbon dioxide in the Arctic Ocean. Transactions of Russian Academy of Sciences. 2007;414(3). (Translated in English by Springer).
  91. Shakhova N., Semiletov I. Methane release and coastal environment in the East Siberian Arctic shelf. Journal of Marine Systems. 2007;66(1/4):227–243.
  92. Savvichev A. S., Rusanov I. I., Pimenov N. V., Zakharova E. E., Veslopolova E. F., Lein A. Y., Crane K., Ivanov M. V. Microbial processes of the carbon and sulfur cycles in the Chukchi Sea. Microbiology. 2007;76:603–613. doi: 10.1134/S0026261707050141.
  93. Namsaraev B. B., Rusanov I. I., Mitskevich I. N., Veslopolova E. F., Bolshakov A. M., Egorov A. V. Bacterial methane oxidation rates in waters and sediments of the Kara Sea and the Yenisey River estuary. Supplement to: Namsaraev B. B. et al. Bacterial oxidation of methane in the Yenisey River estuary and the Kara Sea. Oceanology. 1995;35(1):80–85. (PANGAEA; 1995).
  94. Are F. E. The problem of the emission of deep-buried gases to the atmosphere. In: Paepe R., Melnikov V. P., van Overloop E., Gorokhov V. D. (eds.). Permafrost Response on Economic Development, Environmental Security and Natural Resources. Dordrecht, Netherlands: Springer; 2001. P. 497–509.
  95. Zubov N. N. Sea waters and ice. Leningrad: Gidrometeoizdat; 1938. 454 p. (In Russ.).
  96. Reeburg W. S. Oceanic methane biogeochemistry. Chem. Rev. 2007;107:486–513.
  97. Shakhova N. E., Nicolsky D., Semiletov I. P. On the current state of sub-sea permafrost in the East-Siberian Shelf testing of modeling results by observational data. Transactions of Russian Academy of Sciences. 2009;429(5). (Translated in English by Springer).
  98. Shakhova N. E., Semiletov I. P. Characteristical features of carbon cycle in the shallow shelf of the eastern sector of Russian Arctic. In: N. P. Laverov et al. (eds.). Environmental and Climate Changes and catastrophes. Moscow: A. M. Obukhov Institute of Atmospheric Physics Russian Academy of Sciences; 2008. Vol. 4. P. 167–181.
  99. Steinbach J., Holmstrand H., Scherbakova K., Kosmach D., Bruchrt V., Shakhova N., Salyuk A., Sapart C., Chernikh D., Noormets R., Semiletov I., Gustafsson O. Source Apportionment of Methane Escaping the Subsea Permafrost System in the Outer Eurasian Arctic Shelf. Proceedings National Academy of Sciences (PNAS). 2021;118(10). doi: 10.1073/pnas.2019672118.
  100. Savelieva N. I., Semiletov I. P., Vasilevskaya L. N., Pugach S. P. A climate shift in seasonal values of meteorological and hydrological parameters for Northeastern Asia. Progress in Oceanography. 2000;47(2/4):279–297.
  101. Semiletov I. P., Savelieva N. I., Weller G. E., Pipko I. I., Pugach S. P., Gukov A. Yu., Vasilevskaya L. N. The Dispersion of Siberian River Flows into Coastal Waters: Meteorological, Hydrological and Hydrochemical Aspects. In: The Freshwater Budget of the Arctic Ocean, NATO Meeting / NATO ASI Series. Dordrecht: Kluwer Academic Publishers; 2000. P. 323–367.
  102. Smith L. C., Sheng Y., MacDonald G.M., Hinzman L. D. Disappearing Arctic Lakes. Science. 2005;308(5727):1429.
  103. Zimov S. A., Semiletov I. P., Daviodov S. P., Voropaev Yu. V., Prosyannikov S. F., Wong C. S., Chan Y.-H. Wintertime CO 2 emission from soils of Northeastern Siberia. Arctic. 1993;46:197–204.
  104. Makogon Y. F., Holditch S. A., Makogon T. Y. Natural gas-hydrates – A potential energy source for the 21st Century. Journal of Petroleum Science and Engineering. 2007;56(1):14–31.
  105. Shakhova N. E., Sergienko V. I., Semiletov I. P. Modern state of the role of the East Siberian Shelf in the methane cycle. Herald of the Russian Academy of Sciences. 2009;79(6):507–518.
  106. Imaev V. S., Imaeva L. P., Koz’min B. M. Seismotectonics of Yakutia. Moscow: GEOS; 2000. (In Russ.).
  107. Hope C., Schaefer K. Economic impacts of carbon dioxide and methane released from thawing permafrost. Nature Climate Change. 2015;6:56–59. doi: 10.1038/nclimate2807.
  108. Whitman G., Hope C., Wadhams P. Climate science: Vast costs of Arctic change. Nature. 2013;449:401–403.
  109. Natali S. M., Holdren J. P., Rogers B. M., Treharne R., Duffy P. B., Pomerance R. et al. Permafrost carbon feedbacks threaten global climate goals. Proceedings of the National Academy of Sciences. 2021;118(21). e2100163118.
  110. Barnard P. E., Moomaw W. R., Fioramonti L., Laurance W. F., Mahmoud M. I., O’Sullivan J., Rapley C. G., Rees W. E., Rhodes C. J., Ripple W. J., Semiletov I. P., Talberth J., Tucker C., Wysham D., Ziervogel G. World Scientists’ Warnings Into Action. Local to Global. Science Progress. 2021;104(4):1–32.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Anomalies in the increase in air temperature in the first decade of the 21st century, recorded over the East Siberian Arctic Shelf (ESAS) water area and adjacent land (A); distribution of underwater permafrost in the Arctic (colored purple) (B). Modified based on works [16–20].

Download (734KB)
3. Fig. 2. The “lag” between the decrease in CO2 concentrations and the decrease in temperature (T), which reached 8 thousand years during the previous interglacial period [34].

Download (441KB)
4. Fig. 3. Interpolar concentration gradient: a – atmospheric CO2, b – atmospheric CH4.

Download (191KB)
5. Fig. 4. The study area and location of oceanographic stations in the Arctic seas of Russia, carried out in August–September 2003–2009 (top), bottom – a map of complex stations in the MVA, where studies were conducted on the dynamics of carbon cycle components, including CO2 and CH4, and their exchange with the atmosphere (1996, 2010–2020).

Download (3MB)
6. Fig. 5. Ice complex of Muostakh Island, Northern Cape, August 2004 (photo by I.P. Semiletov).

Download (1MB)
7. Fig. 6. Distribution of pCO2 values ​​(A), degree of saturation with dissolved O2 (B), and the sum of nitrites and nitrates (C) in the seas of the Russian Arctic along the Northern Sea Route (along the route of the transarctic expedition on board the GS Nikolai Kolomeitsev in September 2000).

Download (796KB)
8. Fig. 7. Position of oceanographic stations in the study area (A); distribution of dissolved CH4 concentrations in the bottom water layer (B); distribution of dissolved CH4 concentrations in the surface water layer (C); CH4 diffusion flows (D).

Download (754KB)
9. Fig. 8. Vertical section combining profiles of the second and third types of CH4 distribution in the water column. Samples were taken under the ice in April 2007.

Download (367KB)
10. Fig. 9. Results of processing the first seismic and hydroacoustic data (modified from [31]): a – bubbles in sediments and in the water column; b – bubble clusters in the water column, according to ship echo sounder data; c – bubbles emerging from the bottom, according to side-scan sonar data.

Download (470KB)
11. Fig. 10. Distribution of dissolved methane concentrations in the water column in the Buor-Khaya area, measured under ice in April 2007: a – surface water layer; b – bottom water layer; c – bubbles included in the ice (modified from [20, 31]).

Download (535KB)
12. Fig. 11. Dynamics of methane concentrations in the atmospheric surface layer: a – during the movement of a vessel along the Northern Sea Route (2005); b – during helicopter photography up to an altitude of 1800 m from the sea surface (2006).

Download (229KB)
13. Fig. 12. Methane concentrations in the atmospheric surface layer (a) along the section shown in part b of the figure as a dashed red line; panel (b) shows methane concentrations in the surface water layer (September 2005).

Download (484KB)
14. Fig. 13. Dynamics of dissolved methane downstream of the Lena River in the Bykovskaya channel (September 2006): a – bottom concentrations; b – surface concentrations.

Download (355KB)
15. Fig. 14. Diagram characterizing the relationship between δС13 and δD in the isotopic formula of methane in MVA.

Download (552KB)
16. Fig. 15. Isotopic formula of dissolved methane analyzed using the “Keeling plot” method (ratio of isotopic data and 1000/methane concentration in the gas phase): a – data on δС13 methane; b – data on δD methane [98].

Download (272KB)
17. Fig. 16. Proposed areas of distribution of shallow Arctic gas hydrates (a) and underwater permafrost (b).

Download (1011KB)

Copyright (c) 2024 Russian Academy of Sciences