Diffiiculties in the anthropogenic concept of global warming and the seismogenic trigger mechanism of climate change

Cover Page

Cite item

Full Text

Abstract

Diffiiculties in the anthropogenic concept of global warming are discussed and a seismogenic trigger mechanism for climate change is proposed.The essence of this mechanism is that methane contained in the micropores of frozen rocks in a locked state can be released as a result of the destruction of the microstructure of the environment due to additional stresses caused by the trigger effect of deformation waves passing through gas-saturated areas of sedimentary strata. The waves themselves are generated by the strongest earthquakes that occur in subduction zones. With a characteristic speed of deformation waves of the order of 100 km/year, they travel a distance of about 2000–2500 km from the Aleutian and Kuril-Kamchatka subduction zones to the Arctic zone in approximately 20–25 years. This corresponds to the time difference between a series of the most powerful earthquakes with a magnitude greater than 8.5, which occurred in these zones in the interval 1952–1965, and the beginning of a sharp climate warming in 1980. After the start of the gas filtration process as a result of the destruction of the pore microstructure and a sharp increasing the permeability of the geomedium due to the impact of a deformation wave, the process of methane emission can continue autonomously for tens and even hundreds of years, depending on the thickness of the disturbed gas-saturated layer. This explains the ongoing emission of methane on the Arctic shelf for the last forty-odd years after the strongest earthquakes of the middle of the last century that initiated it.

Full Text

Restricted Access

About the authors

Leopold I. Lobkovsky

Shirshov Institute of Oceanology of the Russian Academy of Scieces; Sakhalin State University/SakhTECH

Email: llobkovsky@ocean.ru
ORCID iD: 0000-0002-8033-8452

Academician of RAS, Doctor of Sciences in Physics and Mathematics, Professor, International Center of the Far-Eastern and Arctic Seas (named by admiral S.O. Makarov)

Russian Federation, Moscow; Yuzhno-Sakhalinsk

Igor P. Semiletov

V. I. Il’yichev Pacific Oceanological Institute, FEB RAS; Sakhalin State University/SakhTECH

Email: ipsemiletov@gmail.com
ORCID iD: 0000-0003-1741-6734

Corresponding Member of RAS, Doctor of Sciences in Geology and Mineralogy, Professor, International Center of the Far-Eastern and Arctic Seas (named by admiral S.O. Makarov)

Russian Federation, Vladivostok; Yuzhno-Sakhalinsk

Alexey A. Baranov

Institute of Earthquake Prediction Theory and Mathematical Geophysics, RAS

Author for correspondence.
Email: aabaranov@gmail.com
ORCID iD: 0000-0002-7793-5555

Candidate of Sciences in Physics and Mathematics

Russian Federation, Moscow

Irina S. Vladimirova

Shirshov Institute of Oceanology of the Russian Academy of Scieces

Email: vladis@gsras.ru
ORCID iD: 0000-0002-7301-7183

Candidate of Sciences in Physics and Mathematics

Russian Federation, Moscow

References

  1. Danilov-Danilyan V.I., Kattsov V. M., Porfiryev B. N. Ecology and climate: where we are now and where we will be in two or three decades. The situation in Russia. Bulletin of the Russian Academy of Sciences. 2023;93(11):1032–1046. (In Russ.).
  2. Neukom R., Barboza L. A., Erb M. P., Shi Feng, Emile-geay J., Evans M. N. et al. 2019. Global mean temperature reconstructions over the Common Era. figshare. Collection. 4507043.v2. https://doi.org/10.6084/m9.figshare.
  3. AGES2k Consortium. A global multiproxy database for temperature reconstructions of the Common Era. Scientific Data 4. 2017. 170088 EP. https://doi.org/10.1038/sdata.2017.88.
  4. PAGES2k Consortium. Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era. Nat. Geosci. 2019;12:643–649. https://doi.org/10.1038/s41561-019-0400-0.
  5. Houghton J. T., Jenkins G. J.,Ephraums J.J. (eds.). IPCC Scientific Assessment 1990: Climate Change 1990. Cambridge, Great Britain;New York, NY, USA; Melbourne, Australia: Cambridge University Press; 1990. 410 p.
  6. Watson R. T. and the Core Writing Team (eds.). IPCC, 2001: Climate Change 2001: Synthesis Report. A Contribution of Working Groups I, II, and III to the Third Assessment Report of the Integovernmental Panel on Climate Change. Cambridge, United Kingdom; New York, NY, USA: Cambridge University Press; 2001. 398 p.
  7. Moberg A., Sonechkin D., Holmgren K. et al. Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature. 2005;433:613–617. https://doi.org/10.1038/nature03265.
  8. Lamb H. H. The early medieval warm epoch and its sequel. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1965;1:13–37.
  9. Mann M. E., Bradley R. S., Hughes M. K. Global-Scale Temperature Patterns and Climate Forcing Over the Past Six Centuries. Nature. 1998;392:779–787.
  10. Masson-Delmotte V., Schulz M., Abe-Ouchi A., Beer J., Ganopolski A., González Rouco J. F., Jansen E., Lambeck K., Luterbacher J., Naish T., Osborn T., Otto-Bliesner B., Quinn T., Ramesh R., Rojas M., Shao X., Timmermann A. Information from Paleoclimate Archives. In: Stocker T. F., Qin D., Plattner G.-K., Tignor M., Allen S. K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P. M. (eds.). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 2013. Cambridge, United Kingdom; New York, NY, USA: Cambridge University Press.
  11. Friedlingstein P., O‘Sullivan M., Jones M. W. et al. Global Carbon Budget 2022. Earth Syst. Sci. Data. 2022;14:4811–4900. https://doi.org/10.5194/essd-14-4811-2022.
  12. Lobkovsky L. I. Seismogenic-triggering mechanism of gas emission activizations on the Arctics helf and associated phases of abrupt warming. Geosciences. 2020;10:428.
  13. Lobkovsky L. I., Baranov A. A., Ramazanov M. M., Vladimirova I. S.,Gabsatarov Y.V., Semiletov I. P., Alekseev D. A. Trigger Mechanisms of Gas Hydrate Decomposition, Methane Emissions, and Glacier Breakups in Polar Regions as a Result of Tectonic Wave Deformation. Geosciences. 2022;12:372.
  14. Lobkovsky L. I., Baranov A. A., Garagash I. A., Ramazanov M. M., Vladimirova I. S., Gabsatarov Y. V., Alekseev D. A., Semiletov I. P. Large Earthquakes in Subduction Zones around the Polar Regions as a Possible Reason for Rapid Climate Warming in the Arctic and Glacier Collapse in West Antarctica. Geosciences. 2023;13:171.
  15. Climate at a Glance: Global Time Series. NOAA National Centers for Environmental information. URL: https://www.ncei.noaa.gov/cag/ (date of application: 15.09.2022).
  16. Lay T. The surge of great earthquakes from 2004 to 2014. Earth and Planetary Science Letters. 2015;409:133–146.
  17. Shakhova N. E., Semiletov I. P. Methane Hydrate Feedbacks. In: Martin Sommerkorn, Susan Joy Hassol (eds.). Arctic Climate Feedbacks: Global Implications. Published by WWF International Arctic Programme August, 2009. P. 81–92. ISBN: 978-2-88085-305-1.
  18. Shakhova N., Semiletov I., Salyuk A., Yusupov V., Kosmach D., Gustafsson O. Extensive Methane Venting to the Atmosphere from Sediments of the East Siberian Arctic Shelf. Science. 2010;327(5970):1246–1250. doi: 10.1126/science.1182221.
  19. Shakhova N., Semiletov I., Leifer I., Sergienko V., Salyuk A., Kosmach D., Chernikh D., Stubbs C., Nicolsky D., Tumskoy V., Gustafsson O. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. Nat. Geosci. 2014;7(1):64–70. doi: 10.1038/ngeo2007, 2014.
  20. Shakhova N., Semiletov I., Sergienko V., Lobkovsky L., Yusupov V., Salyuk A., Salomatin A., Chernykh D., Kosmach D., Panteleev G., Nicolsky D., Samarkin V., Joye S., Charkin A., Dudarev O., Meluzov A., Gustafsson Ö. The East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice. Phil. Trans. R. Soc. A. 2015;373. 20140451. doi: 10.1098/rsta.2014.0451.
  21. Chernykh D., Shakhova N., Yusupov V., Gershelis E., Morgunov B., Semiletov I. First Calibrated Methane Bubble Wintertime Observations in the Siberian Arctic Seas: Selected Results from the Fast Ice.Geosciences. 2023;13. 228. https://doi.org/10.3390/geosciences13080228.
  22. Shakhova N., Semiletov I., Chuvilin E. Understanding the permafrost–hydrate system and associated methane releases in the East Siberian Arctic Shelf. Geosciences. 2019;9.251. doi: 10.3390/geosciences9060251.
  23. Nicolsky D. J., Romanovsky V. E., Romanovskii N. N., Kholodov A. L., Shakhova N. E., Semiletov I. P. Modeling sub-sea permafrost in the East Siberian Arctic Shelf: The Laptev Sea region. J. Geophys. Res. 2012;117. F03028. doi: 10.1029/2012JF002358, 2012.
  24. Romanovskii N. N., Hubberten H.-W., Gavrilov A. V., Eliseeva A. A., Tipenko G. S. Offshore permafrost and gas hydrate stability zone on the shelf of East Siberian Seas. Geo-Mar. Lett. 2005;25:167–182.
  25. Shakhova N., Semiletov I., Gustafsson O., Sergienko V., Lobkovsky L., Dudarev O., Tumskoy V., Grigoriev M., Mazurov A., Salyuk K. et al. Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf. Nat. Commun. 2017;8. 15872.
  26. Lobkovsky L. I., Baranov A. A., Bobrov A. M., Chuvaev A. V. Global geodynamic model of the modern Earth and its application for the Arctic region. Reports of the Russian Academy of Sciences. 2024. (In Russ.). doi: 10.1134/S1028334X23603000.
  27. Garagash I. A., Lobkovsky L. I. Deformation tectonic waves as a possible trigger mechanism for intensifying methane emissions in the Arctic. Arctic: Ecology and Economics. 2021;1(1):42–50. (In Russ.).
  28. Lobkovsky L. I., Ramazanov M. M. Thermomechanical waves in the system elastic lithosphere–viscous asthenosphere. Bulletin of the Russian Academy of Sciences. Mechanics of Liquid and Gas. 2021;(6):4–18. (In Russ.).
  29. Lobkovsky L. I., Baranov A. A., Vladimirova I. S., Gabsatarov Yu. V., Alekseev D. A. Possible seismogenic trigger mechanism for methane emission, glacier destruction and climate warming in the Arctic and Antarctic. Physics of the Earth. 2023;(3):33–47.
  30. Lan X.,Thoning K.W., Dlugokencky E. J. Trends in globally-averaged CH 4 , N 2 O, and SF 6 determined from NOAA Global Monitoring Laboratory measurements. 2015. Version 2023-02. https://doi.org/10.15138/P8XG-AA10.
  31. Dlugokencky E. J., Steele L. P., Lang P. M., Masarie K. A. The growth rate and distribution of atmospheric methane. J. Geophys. Res. 1994;99:17021–17043. https://doi.org/10.1029/94JD01245.
  32. Lobkovsky L. I., Baranov A. A., Vladimirova I. S., Alekseev D. A. Strong earthquakes and deformation waves as possible triggers of climate warming in the Arctic and destruction of glaciers in the Antarctic. Bulletin of the Russian Academy of Sciences. 2023;93(6):526–538. (In Russ.).
  33. Lobkovsky L. I., Ramazanov M. M. On the theory of filtration with double porosity. Reports of the Russian Academy of Sciences. Geosciences. 2019;484(3):348–351. (In Russ.).
  34. Lobkovsky L. I., Ramazanov M. M. Generalized model of filtration in a fractured-porous medium with low-permeability inclusions and its possible applications. Physics of the Earth.2022;(2):144–154. (In Russ.).
  35. Minoura K., Imamura F., Sugawara D., Kono Y., Iwashita T. The 869 Jogan tsunami deposit and recurrence interval of large-scale tsunami on the Pacific coast of northeastern Japan. J. Nat. Disaster Sci. 2001;23(2):83−88.
  36. Ozawa S., Nishimura T., Suito H., Kobayashi T., Tobita M., Imakiire T. Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake. Nature. 2011;475:373–377.
  37. McCaffrey R. Global frequency of magnitude 9 earthquakes. Geology. 2008;36(3):263–266.
  38. Satake K., Atwater B. F. Long-term perspectives on giant earthquakes and tsunamis at subduction zones. Annu. Rev. Earth Planet. Sci. 2007;35:349–374.
  39. Rajendran K. On the recurrence of great subduction zone earthquakes. Current Science. Special section: Earth Sciences. 2013;104(7):880–892.
  40. Shennan I., Barlow N., Carver G., Davies F., Garrett E., Hocking E. Great tsunamigenic earthquakes during the last 1000 years on the Alaska megathrust. Geology. 2014;42(8):687–690.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The picture of the change in the average temperature of the Earth over the last two thousand years. The blue curve is a temperature graph reconstructed from various data, the blue area is the confidence interval, the black shows the temperature in the instrumental period [2], modified.

Download (111KB)
3. Fig. 2. Change in the average temperature of the Earth over the last thousand years. Red graph – global temperature from the 1990 IPCC report [5], modified; blue graph – global temperature from the 2001 report [6], modified; black graph – global temperature from [7], modified.

Download (209KB)
4. Fig. 3. Comparison of the graph of CO2 emissions [11] and the graph of average temperature changes in the Arctic during the 20th and early 21st centuries (studies by the Arctic and Antarctic Research Institute), modified. The red bold lines show the phases of rapid warming.

Download (326KB)
5. Fig. 4. Comparison of graphs: a – changes in average temperature in the Arctic during the 20th and early 21st centuries [15], modified; b – time sequence of the strongest earthquakes according to [16], modified.

Download (274KB)
6. Fig. 5. Propagation of deformation waves in the Arctic region caused by the strongest earthquakes in the Aleutian and Kuril-Kamchatka subduction zones.

Download (695KB)
7. Fig. 6. The impact of sea level change on the stability of Arctic gas hydrates: a – cold period, sea level is lowered, the bottom of the shallow Arctic shelf comes to the surface, average annual temperature is –17 °C; b – warm period, sea level is higher, the shelf is flooded, average annual water temperature is –1 °C [17].

Download (419KB)
8. Fig. 7. Average concentration of methane in the atmosphere: a – graphs showing the globally averaged monthly average value of methane in the atmosphere [30]; b – graph of annual increments of atmospheric CH4 based on globally averaged data on the sea surface [31].

Download (158KB)
9. Fig. 8. Comparison of changes in the Earth's seismic activity and variations in the concentration of methane in the atmosphere. The solid line shows the envelope curve reflecting the change in the average annual increments of methane concentration in the atmosphere in the period 1984–2022. The dotted line shows the curve of variations in the level of seismic activity of the Earth, determined by large earthquakes with a magnitude greater than 8 for the period 1964–2002 [32].

Download (241KB)
10. Fig. 9. Vertical filtration of methane caused by the trigger effect of deformation waves (thick solid arrows), the rise of methane bubbles in water – seeps (dashed arrows).

Download (180KB)

Copyright (c) 2024 Russian Academy of Sciences