Hybrid coatings with a self-healing effect on the surface of functional materials
- Authors: Gnedenkov А.S.1, Sinebryukhov S.L.1, Marchenko V.S.1, Nomerovskii A.D.1, Kononenko Y.I.1, Sergienko V.I.1, Gnedenkov S.V.1
-
Affiliations:
- Institute of Chemistry, FEB RAS
- Issue: No 6 (2024)
- Pages: 41-55
- Section: Chemical Sciences. Functional Coatings
- URL: https://permmedjournal.ru/0869-7698/article/view/677442
- DOI: https://doi.org/10.31857/S0869769824060046
- EDN: https://elibrary.ru/HSYLPH
- ID: 677442
Cite item
Full Text
Abstract
This article provides a review of advances in self-healing hybrid coatings development used to protect functional materials in corrosive environments.Self-healing coatings are currently attracting much interest due to their ability to suppress corrosion, which is a serious problem in almost all industries. The design of smart coatings with the active anticorrosion protection and self-healing is necessary for the long-term service life of metal structures in aggressive environments. When a self-healing coating is damaged in a corrosive media a new protective layer is formed on the surface of the defect and the functional characteristics of the product are restored. Autonomous mechanisms for restoring the protective properties of anticorrosion layers activated due to introducing corrosion inhibitors into the coating matrix.
Full Text

About the authors
А. S. Gnedenkov
Institute of Chemistry, FEB RAS
Author for correspondence.
Email: asg17@mail.com
ORCID iD: 0000-0002-9822-7849
Professor of the Russian Academy of Sciences, Doctor of Sciences (Chemistry), Chief Researcher
Russian Federation, VladivostokS. L. Sinebryukhov
Institute of Chemistry, FEB RAS
Email: sls@ich.dvo.ru
Corresponding Member of the Russian Academy of Sciences, Doctor of Sciences (Chemistry), Associate Professor, Deputy Director
Russian Federation, VladivostokV. S. Marchenko
Institute of Chemistry, FEB RAS
Email: filonina.vs@gmail.com
ORCID iD: 0000-0002-9544-3597
Junior Researcher
Russian Federation, VladivostokA. D. Nomerovskii
Institute of Chemistry, FEB RAS
Email: nomerovskii.ad@outlook.com
ORCID iD: 0000-0002-3118-5971
Vladivostok
Russian Federation, VladivostokY. I. Kononenko
Institute of Chemistry, FEB RAS
Email: yana1996i@mail.ru
ORCID iD: 0000-0002-2299-9009
Junior Researcher
Russian Federation, VladivostokV. I. Sergienko
Institute of Chemistry, FEB RAS
Email: referent@ich.dvo.ru
ORCID iD: 0000-0002-0547-5545
Academician of the Russian Academy of Sciences, Doctor of Sciences (Chemistry), Professor, Scientific leader of the organization
Russian Federation, VladivostokS. V. Gnedenkov
Institute of Chemistry, FEB RAS
Email: svg21@hotmail.com
ORCID iD: 0000-0003-1576-8680
Corresponding Member of the Russian Academy of Sciences, Doctor of Sciences (Chemistry), Professor, Director
Russian Federation, VladivostokReferences
- Gnedenkov A.S., Sinebryukhov S.L., Filonina V.S., Sergienko V.I., Gnedenkov S.V. Physicochemical bases of local heterogeneous corrosion of magnesium and aluminium alloys. Moscow: TECHNOSFERA, 2022. (In Russ.).
- Shang W., Wu F., Wang Y., Rabiei Baboukani A., Wen Y., Jiang J. Corrosion resistance of micro-arc oxidation/graphene oxide composite coatings on magnesium alloys. ACS Omega. 2020;5(13):7262–7270. https://doi.org/10.1021/acsomega.9b04060 .
- Gnedenkov A.S., Sinebryukhov S.L., Filonina V.S., Gnedenkov S.V. Hydroxyapatite-containing PEO-coating design for biodegradable Mg-0.8Ca alloy: Formation and corrosion behaviour. Journal ofMagnesium Alloy. 2021;11(12):4468–4484.
- Feng J., Pan Y., Yang M., Fernandez C., Chen X., Peng Q. A lactoglobulin-composite self-healing coating for Mg alloys. ACS Applied Bio Materials. 2021;4(9):6843–6852. https://doi.org/10.1021/acsabm.1c00560
- Cui X.J., Ning C.M., Zhang G.A., Shang L.L., Zhong L.P., Zhang Y.J. Properties of polydimethylsiloxane hydrophobic modified duplex microarc oxidation/diamond-like carbon coatings on AZ31B Mg alloy. Journal of Magnesium and Alloys. 2021;9(4):1285–1296.
- Wang X., Jing C., Chen Y., Wang X., Zhao G., Zhang X. Active corrosion protection of super-hydrophobic corrosion inhibitor intercalated Mg–Al layered double hydroxide coating on AZ31 magnesium alloy. Journal of Magnesium and Alloys. 2020;8(1):291–300. https://doi.org/10.1016/j.jma.2019.11.011
- Gnedenkov A.S., Sinebryukhov S.L., Filonina V.S., Ustinov A.Y., Sukhoverkhov S.V., Gnedenkov S.V. New polycaprolactone-containing self-healing coating design for enhance corrosion resistance of the magnesium and its alloys. Polymers. 2023;15(1):202.
- Das A.K. Effect of rare earth oxide additive in coating deposited by laser cladding: A review. Materials Today: Proceedings. 2022;52:1558–1564.
- Bouali A.C., Serdechnova M., Blawert C., Tedim J., Ferreira M.G.S., Zheludkevich M.L. Layered double hydroxides (LDHs) as functional materials for the corrosion protection of aluminum alloys: A review. Applied Materials Today. 2020;21:100857.
- Gnedenkov A.S., Filonina V.S., Sinebryukhov S.L., Gnedenkov S.V. A superior corrosion protection of Mg alloy via smart nontoxic hybrid inhibitor-containing coatings. Molecules. 2023;28(6):2538.
- Fattah-alhosseini A., Chaharmahali R., Babaei K. Effect of particles addition to solution of plasma electrolytic oxidation (PEO) on the properties of PEO coatings formed on magnesium and its alloys: A review. Journal of Magnesium and Alloys. 2020;8(3):799–818.
- Gnedenkov A.S., Sinebryukhov S.L., Filonina V.S., Plekhova N.G., Gnedenkov S.V. Smart composite antibacterial coatings with active corrosion protection of magnesium alloys. Journal of Magnesium and Alloys. 2022;10(12):3589–611.
- Gnedenkov A.S., Lamaka S.V., Sinebryukhov S.L., Mashtalyar D.V., Egorkin V.S., Imshinetskiy I.M. Control of the Mg alloy biodegradation via PEO and polymer-containing coatings. Corrosion Science. 2021;182:109254.
- Daavari M., Conde A., Atapour M., Hosseinpour Rokni M., Mora Sánchez H., Mohedano M. In vitro corrosion-assisted cracking of AZ31B Mg alloy with a hybrid PEO+MWCNTs/PCL coating. Surfaces and Interfaces. 2023;42:103446.
- Kaseem M., Dikici B., Dafali A., Fattah-alhosseini A. Self-assembly of coumarin molecules on plasma electrolyzed layer for optimizing the electrochemical performance of AZ31 Mg alloy. Journal of Magnesium and Alloys. 2023;11(5):1618–1628.
- Umoren S.A., Abdullahi M.T., Solomon M.M. An overview on the use of corrosion inhibitors for the corrosion control of Mg and its alloys in diverse media. Journal of Materials Research and Technology. 2022;20:2060–2093.
- Guo X.-P., Song G.-L., Hu J.-Y., Huang D.-B. Corrosion inhibition of magnesium (Mg) alloys. In: Corrosion Prevention of Magnesium Alloys. 2013; p. 61–84.
- Lamaka S.V., Vaghefinazari B., Mei D., Petrauskas R.P., Höche D., Zheludkevich M.L. Comprehensive screening of Mg corrosion inhibitors. Corrosion Science. 2017; 128:224–240.
- Al-Amiery A.A., Isahak W.N.R.W., Al-Azzawi W.K. Corrosion inhibitors: Natural and synthetic organic inhibitors. Lubricants. 2023;11(4):174.
- Jamshidipour Z., Toorani M., Aliofkhazraei M., Mahdavian M. Reducing damage extent of epoxy coating on magnesium substrate by Zr-enhanced PEO coating as an effective pretreatment. Journal of Magnesium and Alloys. 2023;11(2):641–656.
- Adsul S.H., Bagale U.D., Sonawane S.H., Subasri R. Release rate kinetics of corrosion inhibitor loaded halloysite nanotube-based anticorrosion coatings on magnesium alloy AZ91D. Journal of Magnesium and Alloys. 2021;9(1):202–215.
- Williams G, McMurray HN, Grace R. Inhibition of magnesium localised corrosion in chloride containing electrolyte. Electrochimica Acta. 2010;55(27):7824–7833.
- Feng Z., Hurley B., Li J., Buchheit R. Corrosion inhibition study of aqueous vanadate on Mg alloy AZ31. Journal of the Electrochemical Society. 2018;165(2):C94–C102.
- Kharitonov D.S., Zimowska M., Ryl J., Zieliński A., Osipenko M.A., Adamiec J., et al. Aqueous molybdate provides effective corrosion inhibition of WE43 magnesium alloy in sodium chloride solutions. Corrosion Science. 2021;190:109664.
- Cui Z., Ge F., Lin Y., Wang L., Lei L., Tian H., et al. Corrosion behavior of AZ31 magnesium alloy in the chloride solution containing ammonium nitrate. Electrochimica Acta. 2018;278:421–437.
- Williams G, Grace R, Woods RM. Inhibition of the localized corrosion of Mg alloy AZ31 in chloride containing electrolyte. Corrosion. 2015;71(2):184–198.
- Correa P.S., Malfatti C.F., Azambuja D.S. Corrosion behavior study of AZ91 magnesium alloy coated with methyltriethoxysilane doped with cerium ions. Progress in Organic Coatings. 2011;72(4):739–747.
- Anjum M.J., Zhao J.-M., Asl V.Z., Malik M.U., Yasin G., Khan W.Q. Green corrosion inhibitors intercalated Mg:Al layered double hydroxide coatings to protect Mg alloy. Rare Metals. 2021;40(8):2254–2265.
- Song H., Xu Z., Benabou L., Yin Z., Guan H., Yan H., et al. Sodium dodecyl sulfate (SDS) as an effective corrosion inhibitor for Mg-8Li-3Al alloy in aqueous NaCl: A combined experimental and theoretical investigation. Journal of Magnesium and Alloys. 2023;11(1):287–300.
- Hossain A.M.S., Méndez-Arriaga J.M., Xia C., Xie J., Gómez-Ruiz S. Metal complexes with ONS donor Schiff bases. A review. Polyhedron. 2022;217:115692.
- Ali A., Pervaiz M., Saeed Z., Younas U., Bashir R., Ullah S., et al. Synthesis and biological evaluation of 4-dimethylaminobenzaldehyde derivatives of Schiff bases metal complexes: A review. Inorganic Chemistry Communications. 2022;145:109903.
- Liu R., Liu Y., Yong Q., Xie Z.-H., Wu L., Zhong C.-J. Highly corrosion-resistant ZIF-8-integrated micro-arc oxidation coating on Mg alloy. Surface and Coatings Technology. 2023;463:129505.
- He X., Chiu C., Esmacher M.J., Liang H. Nanostructured photocatalytic coatings for corrosion protection and surface repair. Surface and Coatings Technology. 2013;237:320–327.
- Galio A.F., Lamaka S.V., Zheludkevich M.L., Dick L.F.P., Müller I.L., Ferreira M.G.S. Inhibitor-doped sol-gel coatings for corrosion protection of magnesium alloy AZ31. Surface and Coatings Technology. 2010;204(9–10):1479–1486.
- Cicileo G.P., Rosales B.M., Varela F.E., Vilche J.R. Inhibitory action of 8-hydroxyquinoline on the copper corrosion process. Corrosion Science. 1998;40(11):1915–1926.
- Lamaka S.V., Knörnschild G., Snihirova D.V., Taryba M.G., Zheludkevich M.L., Ferreira M.G.S. Complex anticorrosion coating for ZK30 magnesium alloy. Electrochimica Acta. 2009;55(1):131–141.
- Gao H., Li Q., Dai Y., Luo F., Zhang H.X. High efficiency corrosion inhibitor 8-hydroxyquinoline and its synergistic effect with sodium dodecylbenzenesulphonate on AZ91D magnesium alloy. Corrosion Science. 2010;52(5):1603–1609.
- Huang D., Hu J., Song G.L., Guo X. Inhibition effect of inorganic and organic inhibitors on the corrosion of Mg-10Gd-3Y-0.5Zr alloy in an ethylene glycol solution at ambient and elevated temperatures. Electrochimica Acta. 2011;56(27):10166–10178.
- Zhang R.F., Zhang S.F., Yang N., Yao L.J., He F.X., Zhou Y.P., et al. Influence of 8-hydroxyquinoline on properties of anodic coatings obtained by micro arc oxidation on AZ91 magnesium alloys. Journal of Alloys and Compounds. 2012;539:249–255.
- Sun M., Yerokhin A., Bychkova M.Y., Shtansky D.V., Levashov E.A., Matthews A. Self-healing plasma electrolytic oxidation coatings doped with benzotriazole loaded halloysite nanotubes on AM50 magnesium alloy. Corrosion Science. 2016;111:753–69.
- Gnedenkov A.S., Sinebryukhov S.L., Filonina V.S., Ustinov A.Y., Gnedenkov S.V. Hybrid coatings for active protection against corrosion of Mg and its alloys. Polymers. 2023;15(14):3035.
- Snihirova D., Lamaka S.V., Taryba M., Salak A.N., Kallip S., Zheludkevich M.L., et al. Hydroxyapatite microparticles as feedback-active reservoirs of corrosion inhibitors. ACS Applied Materials & Interfaces. 2010;2(11):3011–3022.
- Zheludkevich M. Self-healing anticorrosion coatings. In: Self-healing materials: Fundamentals, design strategies, and applications. Weinheim, Germany: John Wiley and Sons. 2009; p. 101–139.
- Taryba M., Lamaka S.V., Snihirova D., Ferreira M.G.S., Montemor M.F., Wijting W.K., et al. The combined use of scanning vibrating electrode technique and micro-potentiometry to assess the self-repair processes in defects on “smart” coatings applied to galvanized steel. Electrochimica Acta. 2011;56(12):4475–4488.
- Wang X., Li L., Xie Z.-H., Yu G. Duplex coating combining layered double hydroxide and 8-quinolinol layers on Mg alloy for corrosion protection. Electrochimica Acta. 2018;283:1845–1857.
- Gnedenkov A.S., Sinebryukhov S.L., Nomerovskii A.D., Filonina V.S., Ustinov A.Y., Gnedenkov S.V. Design of self-healing PEO-based protective layers containing in-situ grown LDH loaded with inhibitor on the MA8 magnesium alloy. Journal of Magnesium and Alloys. 2023;11(10):3688–3709.
- Lv Y., Zhang Y., Meng X., Dong Z., Zhang X. Construction of a PEO/Mg–Mn LDH composite coating on Mg–Ag–Mn alloy for enhanced corrosion resistance and antibacterial potential. Ceramics International. 2023;49(22):35632–35643.
- Kaseem M., Ko Y.G. Formation of flower-like structures for optimizing the corrosion resistance of Mg alloy. Materials Letters. 2018;221:196–200.
- Al Zoubi W., Ko Y.G. Self-assembly of hierarchical N-heterocycles-inorganic materials into three-dimensional structure for superior corrosion protection. Chemical Engineering Journal. 2019;356:850–856.
- Al Zoubi W., Kim M.J., Yoon D.K., Salih Al-Hamdani A.A., Kim Y.G., Ko Y.G. Effect of organic compounds and rough inorganic layer formed by plasma electrolytic oxidation on photocatalytic performance. Journal of Alloys and Compounds. 2020;823:153787.
Supplementary files
