Antifouling coatings on the base of bioinspired technologies for marine applications
- Authors: Kharchenko U.V.1, Egorkin V.S.1, Vyalyi I.Е.1, Sinebryukhov S.L.1, Gnedenkov S.V.1
-
Affiliations:
- Institute of Chemistry, FEB RAS
- Issue: No 6 (2024)
- Pages: 56-72
- Section: Chemical Sciences. Functional Coatings
- URL: https://permmedjournal.ru/0869-7698/article/view/677443
- DOI: https://doi.org/10.31857/S0869769824060059
- EDN: https://elibrary.ru/HSUQAW
- ID: 677443
Cite item
Full Text
Abstract
In the offshore industry, antifouling protection is achieved mainly through the use of special antifouling coatings whose polymer matrix contains biocides releasing during the object exploitation at a controlled rate. Despite its recognized efficiency, this strategy has significant drawbacks, among which is the high ecotoxicity of antifouling agents. The increasing legislation on the use of antifouling compounds has intensified efforts to find alternative ecologically friendly technologies. Antifouling strategies possessed by living organisms are of particular scientific interest. This paper presents an overview in the field of bioinspired technologies applicable to the development of antifouling coatings in the marine application.
Full Text

About the authors
U. V. Kharchenko
Institute of Chemistry, FEB RAS
Author for correspondence.
Email: ulyana-kchar@mail.ru
ORCID iD: 0000-0001-5166-5609
Candidate of Sciences in Chemistry, Researcher
Russian Federation, VladivostokV. S. Egorkin
Institute of Chemistry, FEB RAS
Email: egorkin@ich.dvo.ru
ORCID iD: 0000-0001-5489-6832
Candidate of Sciences in Chemistry, Senior Researcher
Russian Federation, VladivostokI. Е. Vyalyi
Institute of Chemistry, FEB RAS
Email: igorvyal@gmail.com
ORCID iD: 0000-0003-3806-1709
Candidate of Sciences in Chemistry, Researcher
Russian Federation, VladivostokS. L. Sinebryukhov
Institute of Chemistry, FEB RAS
Email: sls@ich.dvo.ru
ORCID iD: 0000-0002-0963-0557
Corresponding Member of RAS, Doctor of Sciences in Chemistry, Deputy Director
Russian Federation, VladivostokS. V. Gnedenkov
Institute of Chemistry, FEB RAS
Email: svg21@hotmail.com
ORCID iD: 0000-0003-1576-8680
Corresponding Member of RAS, Doctor of Sciences in Chemistry, Director
Russian Federation, VladivostokReferences
- Schultz M.P., Bendick J.A., Holm E.R., Hertel W.M. Economic impact of biofouling on a naval surface ship. Biofouling. 2011;27:87–98. http://dx.doi.org/10.1080/08927014.2010.542809.
- Yebra D.M., Kiil S., Dam-Johansen K. Antifouling technology – past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog. Org. Coat. 2004;50:75–104. Й http://dx.doi.org/10.1016/j.porgcoat.2003.06.001.
- Carman M.L., Estes T.G., Feinberg A.W., Schumacher J.F., Wilkerson W., Wilson L.H., Callow M.E., Callow J.A., Brennan A.B. Engineered antifouling microtopographies – correlating wettability with cell attachment. Biofouling. 2006;22:11–21. https://doi.org/10.1080/08927010500484854.
- Liu K., Yao X., Jiang L. Recent developments in bio-inspired special wettability. Chemical Society Reviews. 2010;39(8):3240. https://doi.org/10.1039/b917112f.
- Liu Y., Li G. A new method for producing “Lotus Effect” on a biomimetic shark skin. J. Colloid Interface Sci. 2012;388(1):235–242. https://doi.org/10.1016/j.jcis.2012.08.033.
- Chen H., Zhang X., Ma L., Che D., Zhang D., Sudarshan T.S. Investigation on large-area fabrication of vivid shark skin with superior surface functions. Appl. Surf. Sci. 2014;316:124–131. http://dx.doi.org/10.1016/j.apsusc.2014.07.145.
- Chen Z., Zhao W., Xu J. et al. Designing environmentally benign modified silica resin coatings with biomimetic textures for antibiofouling. RSC Advances. 2015;5(46):36874–36881. https://doi.org/10.1039/C5RA04658K.
- Chen Z., Zhao W., Mo M., Zhou C., Liu G., Zeng Z., Wu X., Xue Q. Architecture of modified silica resin coatings with various micro/nano patterns for fouling resistance: Microstructure and antifouling performance. RSC Advances. 2015;118:97862–97873. https://doi.org/10.1039/C5RA17179B.
- Chapman J., Hellio C., Sullivan T., Brown R., Russell S., Kiterringham E., Le Nor L., Regan F. Bioinspired synthetic macroalgae: Examples from nature for antifouling applications. Int. Biodeter. Biodegrad. 2014;86:6–13. https://doi.org/10.1016/j.ibiod.2013.03.036.
- Feng D.-Q., Wang W., Wang X., Qiu Y., Ke C.-H. Low barnacle fouling on leaves of the mangrove plant Sonneratia apetala and possible anti-barnacle defense strategies. Mar. Ecol. Prog. Ser. 2016;544:169–182. http://dx.doi.org/10.3354/meps11585.
- Qian P-Y., Li Z., Xu Y., Li Y., Fusetani N. Mini-review: marine natural products and their synthetic analogs as antifouling compounds: 2009–2014. Biofouling. 2015;31(1):101–122. https://doi.org/10.1080/08927014.2014.997226.
- Wang K-L., Wu Z-H., Wang Y., Wang C-Y., Xu Y. Mini-review: antifouling natural products from marine microorganisms and their synthetic analogs. Marine Drugs. 2017;15:266. https://doi.org/10.3390/md15090266.
- Liu L.L., Wu C.H., Qian P.Y. Marine natural products as antifouling molecules – a mini-review (2014–2020). Biofouling. 2020;36(10):1210–1226. https://doi.org/10.1080/08927014.2020.1864343.
- Sjögren M., Dahlström M., Göransson U., Jonsson P.R., Bohlin L. Recruitment in the field of Balanus improvisus and Mytilus edulis in response to the antifouling cyclopeptides barettin and 8,9-dihydrobarettin from the marine sponge Geodia barretti. Biofouling. 2004;20(6):291–297. https://doi.org/10.1080/08927010400027027.
- Stupak M.E., Garcia M.T., Perez M.C. Non-toxic alternative compounds for marine antifouling paints. Int. Biodeter. Biodegrad. 2003;52:49–52. http://dx.doi.org/10.1016/S0964-8305(03)00035-0.
- Zmozinski A.V., Peres R.S., Brust F.R. et al. The effect of rue (Ruta graveolens) and ginger (Zingiber officinale) extracts as antifouling agents in silicone matrix coatings. J. Coat. Technol. Res. 2021;18:1013–1025. https://doi.org/10.1007/s11998-020-00454-w.
- Price R.R., Patchan M., Clare A., Rittschof D., Bonaventura J. Performance enhancement of natural antifouling compounds and their analogs through microencapsulation and controlled release. Biofouling. 1992;6:207–216. https://doi.org/10.1080/08927019209386223.
- Chambers L.D., Wharton J.A., Wood R.J.K., Walsh F.C., StokesK.R. Techniques for the measurement of natural product incorporation into an antifouling coating. Prog. Org. Coat. 2014;77:473–484. http://dx.doi.org/10.1016/j.porgcoat.2013.11.013.
- Chen L., Xia C., Qian P-Y. Optimization of antifouling coatings incorporating butenolide, a potent antifouling agent via field and laboratory tests. Prog. Org. Coat. 2017;109:22–29. http://dx.doi.org/10.1016/j.porgcoat.2017.04.014.
- Feng D.Q., He J., Chen S.Y., Su P., Ke C.H., Wang W. The plant alkaloid camptothecin as a novel antifouling compound for marine paints: Laboratory bioassays and field trials. Mar. Biotechnol. 2018;20:623–638. https://doi.org/10.1007/s10126-018-9834-4.
- Kharchenko U., Beleneva I., Egorkin V., Vyalyi I., Izotov N., Tsvetnikov A., Karpenko A., Nguyên V. Chi Preparation of PEO/polymer coatings on aluminum alloy with antifouling properties. J. Coat. Technol. Res. 2023;20:763–779. DOI: https://doi.org/10.1007/s11998-022-00706-x.
- Liu H., Chen S.Y., Guo J-Y., Su P.,Qiu Y-K., Ke C-H., Feng D-Q. Effective natural antifouling compounds from the plant Nerium oleander and testing. Int. Biodeter. Biodegrad. 2018;127:170–177. http://dx.doi.org/10.1016/j.ibiod.2017.11.022.
- Acevedo M.S., Puentes C., Carreño K., León J.G., Stupak M., García M., Pérez M., Blustein G. Antifouling paints based on marine natural products from Colombian Caribbean. Int. Biodeter. Biodegrad. 2013;83:97–104. http://dx.doi.org/10.1016/j.ibiod.2013.05.002.
- Peres R.S., Armelin E., Alemán C., Ferreira C.A. Modified tannin extracted from black wattle tree as an environmentally friendly antifouling pigment. Industrial Crops and Products. 2015;65:506–514. http://dx.doi.org/10.1016/j.indcrop.2014.10.033.
- Soliman Y.A.A., Brahim A.M., Moustafa A.H., Hamed M.A.F. Antifouling evaluation of extracts from Red Sea soft corals against primary biofilm and biofouling. Asian Pac. J. Trop. Biomed. 2017;7(11):991–997. http://dx.doi.org/10.1016/j.apjtb.2017.09.016.
- Noor Idora M.S., Ferry M., Wan Nik W.B., Jasnizat S. Evaluation of tannin from Rhizophora apiculata as natural antifouling agents in epoxy paint for marine application. Prog. Org. Coat. 2015;81:125–131. http://dx.doi.org/10.1016/j.porgcoat.2014.12.012.
- Pérez M., García M., Sánchez M., Stupak M., Mazzuca M., Palermo J.A., Blustein G. Effect of secochiliolide acid isolated from the Patagonian shrub Nardophyllum bryoides as active component in antifouling paints. Int. Biodeter. Biodegrad. 2014;89:37–44. http://dx.doi.org/10.1016/j.ibiod.2014.01.009.
- Rajana R., Selvaraj M., Palraj S., Subramanian G. Studies on the anticorrosive and antifouling properties of the Gracilaria edulis extract incorporated epoxy paint in the Gulf of Mannar Coast, Mandapam, India. Prog. Org. Coat. 2016;90:448–454. http://dx.doi.org/10.1016/j.porgcoat.2015.11.008.
- Eguia E., Trueba A. Application of marine biotechnology in biocides for testing on environmentally coatings the production of natural innocuous antifouling. J. Coat. Technol. Res. 2007;4:191–202. http://dx.doi.org/10.1007/s11998-007-9022-3.
- Wang X., Yu L., Liu Y., Jiang X. Synthesis and fouling resistance of capsaicin derivatives containing amide groups. Sci. Total Environ. 2020;710:136361. https://doi.org/10.1016/j.scitotenv.2019.136361.
- Dahlstrom M., Elwing H. Adrenoceptor and other pharmacoactive compounds as putative antifoulants. Progress in Molecular and Subcellular Biology. 2006;42:171–202. https://doi.org/10.1007/3-540-30016-3_7.
- Qiu H., Feng K., Gapeeva A., Meurisch K., Kaps S., Li X., Yu L., Mishra Y., Adelung R., Baum M. Functional polymer materials for modern marine biofouling control. Prog. Polymer Sci. 2022;127:101516. https://doi.org/10.1016/j.progpolymsci.2022.101516.
- Chen S., Ma C., Zhang G. Biodegradable polymer as controlled release system of organic antifoulant to prevent marine biofouling. Prog. Org. Coat. 2017;104:58. https://doi.org/10.1016/j.porgcoat.2016.12.011.
- Ma C., Zhang W., Zhang, G., Qian, P.-Y. Environmentally Friendly Antifouling Coatings Based on Biodegradable Polymer and Natural Antifoulant. ACS Sustainable Chemistry & Engineering. 2017;5(7):6304–6309. 10.1021/acssuschemeng.7b01385' target='_blank'>https://doi: 10.1021/acssuschemeng.7b01385.
- Liu M., Gan Z., Jia B., Hou Y., Zheng H., Wu Y., Li S., Guo Z. Mucilage-inspired robust antifouling coatings under liquid mediums. Chem. Eng. J. 2022;446(2):136949. https://doi.org/10.1016/j.cej.2022.136949.
- Zhang H., Wang F., Guo Z. The antifouling mechanism and application of bio-inspired superwetting surfaces with effective antifouling performance. Advances in Colloid and Interface Science. 2024;325:103097. https://doi.org/10.1016/j.cis.2024.103097.
- Cui J., Liu L., Chen B., Hu J., Song M., Dai H., Wang X., Geng H. A comprehensive review on the inherent and enhanced antifouling mechanisms of hydrogels and their applications. Int. J. Biol. Macromol. 2024;265(2):130994. https://doi.org/10.1016/j.ijbiomac.2024.130994.
- Yang J., Xue B., Zhou Y., Qin M., Wang W., Cao Y. Spray-Painted Hydrogel Coating for Marine Antifouling. Advanced Materials Technologies. 2021;6(3):2000911. https://doi.org/10.1002/admt.202000911.
- Sun Y., Ji Y., Lang Y., Wang L., Liu B., Zhang Z. A comparative study on the impact of the carbon nanotubes-modified polydimethylsiloxane nanocomposites on the colonization dynamics of the pioneer biofilm communities. Int. Biodeter. Biodegrad. 2018;129:195–201. https://doi.org/10.1016/j.ibiod.2018.02.011.
- Beigbeder A., Degee P., Conlan S.L., Mutton R.J., Clare A.S., Pettitt M.E., Callow M.E., Callow J.A., Dubois P. Preparation and characterisation of silicone-based coatings filled with carbon nanotubes and natural sepiolite and their application as marine fouling-release coatings. Biofouling. 2008;24(4):291–302. https://doi.org/10.1080/08927010802162885.
- Beigbeder A., Labruyère C., Viville P., Pettitt M.E., Callow M.E., Callow J.A., Dubois P. Surface and Fouling-Release Properties of Silicone/Organomodified Montmorillonite Coatings. J. Adhes. Sci. Technol. 2011;25(14):1689–1700. https://doi.org/10.1163/016942410X524129.
- Selim M.S., Elmarakbi A., Azzam A.M., Shenashen M.A., El-Saeed A.M., El-Safty S.A. Eco-friendly design of superhydrophobic nano-magnetite/silicone composites for marine foul-release paints. Prog. Org. Coat. 2018;116:21–34. https://doi.org/10.1016/j.porgcoat.2017.12.008.
- Selim M.S., Yang H., Wang F.Q., Fatthallah N.A., Huang Y., Kuga S., Silicone/ZnO nanorod composite coating as a marine antifouling surface. Appl. Surf. Sci. 2019;466:40–50. https://doi.org/10.1016/j.apsusc.2018.10.004.
- Selim M.S., El-Safty S.A., El-Sockary M.A., Hashem A.I., Elenien O.M.A., El-Saeed A.M., Fatthallah N.A. Modeling of spherical silver nanoparticles in silicone-based nanocomposites for marine antifouling. RSC Advances. 2015;5(78);63175–63185. https://doi.org/10.1039/C5RA07400B.
- Qiu H., Hölken I., Gapeeva A., Filiz V., Adelung R., Baum M. Development and Characterization of Mechanically Durable Silicone-Polythiourethane Composites Modified with Tetrapodal Shaped ZnO Particles for the Potential Application as Fouling-Release Coating in the Marine Sector. Materials. 2018;11(12):2413. https://doi.org/10.3390/ma11122413.
- Tian S., Jiang D., Pu J., Sun X., Li Z., Wu B., Zheng W., Liu W., Liu Z. A new hybrid silicone-based antifouling coating with nanocomposite hydrogel for durable antifouling properties. Chem. Eng. J. 2019;370:1–9. https://doi.org/10.1016/j.cej.2019.03.185.
- Cao Z., Cao P. Research Progress on Low-Surface-Energy Antifouling Coatings for Ship Hulls: A Review. Biomimetics. 2023;8:502. https://doi.org/10.3390/biomimetics8060502.
- Tsvetnikov A.K., Matveenko L.A., Mashtalyar D.V., Egorkin V.S., Golub A.V., Maslennikov S.I., Pavlov A.D., Gnedenkov S.V. Functional materials and coatings based on nanodispersed polytetrafluoroethylene of different temperature fractions. Vestnik of the FEB RAS. 2018;5:77–85. (In Russ.). doi: 10.25808/08697698.2018.201.5.011.
- Tian L., Jin E., Yu B., Sun H., Shang Y., Bing W. Novel anti-fouling strategies of live and dead soft corals (Sarcophyton trocheliophorum): combined physical and chemical mechanisms. J. Bionic Eng. 2020;17:677–685. https://doi.org/10.1007/s42235-020-0072-x.
- Tian L., Yin Y., Jin H., Bing W., Jin E., Zhao J., Ren L. Novel marine antifouling coatings inspired by corals. Materials Today Chemistry. 2020;17:100294. https://doi.org/10.1016/j.mtchem.2020.100294.
Supplementary files
