Physico-chemical aspects and the mechanism of formation of anti-icing coatings for aircraft structures

Cover Page

Cite item

Full Text

Abstract

The review analyzes literature sources describing methods and approaches to the creation of anti-icing coatings, as well as the problems of development and application of new anti-icing materials and coatings. The existing works presenting the results of research into the characteristics of superhydrophobic/anti-icing coatings on the surface of metals and alloys treated by plasma electrolytic oxidation are presented.

Full Text

Restricted Access

About the authors

V. S. Egorkin

Candidate of Sciences in Chemistry, Senior Researcher

Author for correspondence.
Email: egorkin@ich.dvo.ru
ORCID iD: 0000-0001-5489-6832

Candidate of Sciences in Chemistry, Senior Researcher

Russian Federation, Vladivostok

U. V. Kharchenko

Institute of Chemistry, FEB RAS

Email: ulyana-kchar@mail.ru
ORCID iD: 0000-0001-5166-5609

Candidate of Sciences in Chemistry, Researcher

Russian Federation, Vladivostok

I. Е. Vyalyi

Institute of Chemistry, FEB RAS

Email: igorvyal@gmail.com
ORCID iD: 0000-0003-3806-1709

Candidate of Sciences in Chemistry, Researcher

Russian Federation, Vladivostok

M. V. Adigamova

Institute of Chemistry, FEB RAS

Email: adigamova@ich.dvo.ru
ORCID iD: 0000-0002-0341-9881

Candidate of Sciences in Chemistry, Senior Researcher

Russian Federation, Vladivostok

I. V. Lukyanchuk

Institute of Chemistry, FEB RAS

Email: lukiyanchuk@ich.dvo.ru
ORCID iD: 0000-0003-1680-4882

Candidate of Sciences in Chemistry, Senior Researcher

Russian Federation, Vladivostok

S. L. Sinebryukhov

Institute of Chemistry, FEB RAS

Email: sls@ich.dvo.ru
ORCID iD: 0000-0002-0963-0557

Corresponding Member of RAS, Doctor of Sciences in Chemistry, Deputy Director

Russian Federation, Vladivostok

S. V. Gnedenkov

Institute of Chemistry, FEB RAS

Email: svg21@hotmail.com
ORCID iD: 0000-0003-1576-8680

Corresponding Member of RAS, Doctor of Sciences in Chemistry, Director

Russian Federation, Vladivostok

References

  1. Aircraft icing handbook. Lower Hutt: Civil Aviation Authority; 2000. 108 p.
  2. Huang X., Tepylo N., Pommier-Budinger V., Budinger M., Bonaccurso E., Villedieu P., Bennani L. A survey of icephobic coatings and their potential use in a hybrid coating/active ice protection system for aerospace applications. Prog. Aerosp. Sci. 2019;105:74–97.
  3. Zhang C., Liu H. Effect of drop size on the impact thermodynamics for supercooled large droplet in aircraft icing. Physics of Fluids. 2016;28(6).
  4. Fortin G. Super-Hydrophobic Coatings as a Part of the Aircraft Ice Protection System. Engineering, Materials Science, Environmental Science. 2017. doi: 10.4271/2017-01-2139.
  5. Yeong Y.H., Sokhey J., Loth E. Ice Adhesion on Superhydrophobic Coatings in an Icing Wind Tunnel. Contamination Mitigating Polymeric Coatings for Extreme Environments. 2018:99–121.
  6. Kulinich S.A., Farzaneh M. On ice-releasing properties of rough hydrophobic coatings. Cold Regions Science and Technology. 2011; 65(1):60–64.
  7. Kulinich S.A., Farhadi S., Nose K., Du X.W. Superhydrophobic Surfaces: Are They Really Ice-Repellent? Langmuir. 2011;27(1):25–29.
  8. Susoff M., Siegmann K., Pfaffenroth C., Hirayama M. Evaluation of icephobic coatings – Screening of different coatings and influence of roughness. Applied Surface Science. 2013;282:870–879.
  9. Chen J., Liu J., He M., Li K., Cui D., Zhang Q., Zeng X., Zhang Y., Wang J. et al. Superhydrophobic surfaces cannot reduce ice adhesion. Applied Physics Letters. 2012;101(11).
  10. Momen G., Jafari R., Farzaneh M. Ice repellency behaviour of superhydrophobic surfaces: Effects of atmospheric icing conditions and surface roughness. Applied Surface Science. 2015;349:211–218.
  11. Hejazi V., Sobolev K., Nosonovsky M. From superhydrophobicity to icephobicity: forces and interaction analysis. Scientific Reports. 2013;3(1):2194.
  12. Nosonovsky M., Hejazi V. Why Superhydrophobic Surfaces Are Not Always Icephobic. ACS Nano. 2012;6(10):8488–8491.
  13. Lian Y., Guo Y. Investigation of the Splashing Phenomenon of Large Droplets for Aviation Safety. SAE Technical Paper. 2015:11. doi: 10.4271/2015-01-2100.
  14. Parent O., Ilinca A. Anti-icing and de-icing techniques for wind turbines: Critical review. Cold Regions Science and Technology. 2011;65(1):88–96.
  15. Kraj A.G., Bibeau E.L. Phases of icing on wind turbine blades characterized by ice accumulation. Renewable Energy. 2010;35(5):966–972.
  16. Mingione G., Barocco M., Denti E. et al. Flight in Icing Conditions. 2008.
  17. Scavuzzo R.J., Chu M.L. Structural Properties of Impact Ices Accreted on Aircraft Structures. 1987.
  18. Amendola A., Mingione G. On the problem of icing for modern civil aircraft. Air & Space Europe. 2001;3(3/4):214–217.
  19. Sojoudi H., Wang M., Boscher N.D., McKinley G.H., Gleason K.K. Durable and scalable icephobic surfaces: similarities and distinctions from superhydrophobic surfaces. Soft Matter. 2016;12(7):1938–1963.
  20. Nishimoto S., Bhushan B. Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity. RSC Adv. 2013;3:671–690.
  21. Varanasi K.K., Deng T., Hsu M.F., Bhate N. Design of Superhydrophobic Surfaces for Optimum Roll-Off and Droplet Impact Resistance. In: Nano-Manufacturing Technology; and Micro and Nano Systems. Vol. 13, parts A, B. ASMEDC; 2008. P. 637–645.
  22. Varanasi K.K., Deng T., Smith J.D., Hsu M., Bhate N. Frost formation and ice adhesion on superhydrophobic surfaces. Applied Physics Letters. 2010;97(23).
  23. Stone H.A. Ice-Phobic Surfaces That Are Wet. ACS Nano. 2012;6(8):6536–6540.
  24. Makkonen L. Ice Adhesion –Theory, Measurements and Countermeasures. Journal of Adhesion Science and Technology. 2012;26(4/5):413–445.
  25. Boinovich L.B., Emelyanenko A.M., Emelyanenko K.A., Modin E.B. Modus Operandi of Protective and Anti-icing Mechanisms Underlying the Design of Longstanding Outdoor Icephobic Coatings. ACS Nano. 2019;13(4):4335–4346.
  26. Sojoudi H., Wang M., Boscher N.D., McKinley G.H., Gleason K.K. Durable and scalable icephobic surfaces: similarities and distinctions from superhydrophobic surfaces. Soft Matter. 2016;12(7):1927–2232.
  27. Kulinich S.A., Farzaneh M. How Wetting Hysteresis Influences Ice Adhesion Strength on Superhydrophobic Surfaces. Langmuir. 2009;25(16):8854–8856.
  28. Sarkar D.K., Farzaneh M. Superhydrophobic Coatings with Reduced Ice Adhesion. Journal of Adhesion Science and Technology. 2009;23(9):1215–1237.
  29. Mishchenko L., Hatton B., Bahadur V., Taylor J.A., Krupenkin T., Aizenberg J. Design of Ice-free Nanostructured Surfaces Based on Repulsion of Impacting Water Droplets. ACS Nano. 2010;4(12):7699–7707.
  30. Tourkine P., Le Merrer M., Quéré D. Delayed Freezing on Water Repellent Materials. Langmuir. 2009;25(13):7214–7216.
  31. Alizadeh A., Yamada M., Li R., Shang W., Otta S., Zhong S., Ge L., Dhinojwala A., Conway K.R. et al. Dynamics of Ice Nucleation on Water Repellent Surfaces. Langmuir. 2012;28(6):3180–3186.
  32. Saito H., Takai K. Ymauchi G. A Study On Ice Adhesiveness To Water-Repellent Coating. Journal of the Society of Materials Science, Japan. 1997;46(9 Appendix):185–189.
  33. Schutzius T.M., Jung S., Maitra T., Eberle P., Antonini C., Stamatopoulos C., Poulikakos D. Physics of Icing and Rational Design of Surfaces with Extraordinary Icephobicity. Langmuir. 2015;31(17):4807–4821.
  34. Kreder M.J., Alvarenga J., Kim P., Aizenberg J. Design of anti-icing surfaces: smooth, textured or slippery? Nature Reviews Materials. 2016;1(1):15003.
  35. Lv J., Song Y., Jiang L., Wang J. Bio-Inspired Strategies for Anti-Icing. ACS Nano. 2014;8(4):3152–3169.
  36. Golovin K., Tuteja A. A predictive framework for the design and fabrication of icephobic polymers. Science Advances. 2017;3(9).
  37. Boinovich L.B., Emelyanenko A.M. Anti-icing Potential of Superhydrophobic Coatings. Mendeleev Communications. 2013;23(1):3–10.
  38. Sharifi N., Dolatabadi A., Pugh M., Moreau C. Anti-icing performance and durability of suspension plasma sprayed TiO2 coatings. Cold Regions Science and Technology. 2019;159:1–12.
  39. Boinovich L., Emelyanenko A.M., Korolev V.V., Pashinin A.S. Effect of Wettability on Sessile Drop Freezing: When Superhydrophobicity Stimulates an Extreme Freezing Delay. Langmuir. 2014;30(6):1659–1668.
  40. Antonini C., Villa F., Bernagozzi I., Amirfazli A., Marengo M. Drop Rebound after Impact: The Role of the Receding Contact Angle. Langmuir. 2013;29(52):16045–16050.
  41. Maitra T., Tiwari M.K., Antonini C., Schoch P., Jung S., Eberle P., Poulikakos D. On the Nanoengineering of Superhydrophobic and Impalement Resistant Surface Textures below the Freezing Temperature. Nano Letters. 2014;14(1):172–182.
  42. Tiwari M.K., Bayer I.S., Jursich G.M., Schutzius T.M., Megaridis C.M. Highly Liquid-Repellent, Large-Area, Nanostructured Poly(vinylidene fluoride)/Poly(ethyl 2-cyanoacrylate) Composite Coatings: Particle Filler Effects. ACS Applied Materials & Interfaces. 2010;2(4):1114–1119.
  43. Wong T.-S., Kang S.H., Tang S.K.Y., Smythe E.J., Hatton B.D., Grinthal A., Aizenberg J. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature. 2011;477;443–447.
  44. Wilson P.W., Lu W., Xu H., Kim P., Kreder M.J., Alvarenga J., Aizenberg J. Inhibition of ice nucleation by slippery liquid-infused porous surfaces (SLIPS). Phys. Chem. Chem. Phys. 2013;15(2):581–585.
  45. Zhang Y.-L., Xia H., Kim E., Sun H.-B. Recent developments in superhydrophobic surfaces with unique structural and functional properties. Soft Matter. 2012;844:11217.
  46. Egorkin V.S., Gnedenkov S.V., Sinebryukhov S.L., Vyaliy I.E., Gnedenkov A.S., Chizhikov R.G. Increasing thickness and protective properties of PEO-coatings on aluminum alloy. Surface and Coatings Technology. 2018;334:29–42.
  47. Gnedenkov S.V., Sinebryukhov S.L., Mashtalyar D.V., Egorkin V.S., Sidorova M.V., Gnedenkov A.S. Composite polymer-containing protective coatings on magnesium alloy MA8. Corrosion Science. 2014;85:52–59.
  48. Gnedenkov S.V., Sinebryukhov S.L., Zavidnaya A.G., Egorkin V.S., Puz’ A.V., Mashtalyar D.V., Sergienko V.I., Yerokhin A.L., Matthews A. Composite hydroxyapatite-PTFE coatings on Mg-Mn-Ce alloy for resorbable implant applications via a plasma electrolytic oxidation-based rout. J. Taiwan Inst. Chem. Eng. 2014;45(6):3104–3109.
  49. Joo J., Kim D., Moon H.-S., Kim K., Lee J. Durable anti-corrosive oil-impregnated porous surface of magnesium alloy by plasma electrolytic oxidation with hydrothermal treatment. Applied Surface Science. 2020;509:145361.
  50. Al Zoubi W., Kim M.J., Kim Y.G., Ko Y.G. Fabrication of graphene oxide/8-hydroxyquinolin/inorganic coating on the magnesium surface for extraordinary corrosion protection. Progress in Organic Coatings. 2019;137:105314.
  51. Liu A., Xu J. Preparation and corrosion resistance of superhydrophobic coatings on AZ31 magnesium alloy. Transactions of Nonferrous Metals Society of China. 2018;28(11):2287–2293.
  52. Zhang Q., Zhang H. Corrosion resistance and mechanism of micro-nano structure super-hydrophobic surface prepared by laser etching combined with coating process. Anti-Corrosion Methods and Materials. 2019;66(3):264–273.
  53. Wang Z., Zhang J., Li Y., Bai L. et al. Enhanced corrosion resistance of micro-arc oxidation coated magnesium alloy by superhydrophobic Mg−Al layered double hydroxide coating. Transactions of Nonferrous Metals Society of China. 2019;29(10):2066–2077.
  54. Zhang S., Cao D., Xu L., Lin Z., Meng R. Fabrication of a Superhydrophobic Polypropylene Coating on Magnesium Alloy with Improved Corrosion Resistance. International Journal of Electrochemical Science. 2020;15(1):177–187.
  55. Wu Y., Wang Y., Liu H., Liu Y., Guo L., Jia D., Ouyang J., Zhou Y. The fabrication and hydrophobic property of micro-nano patterned surface on magnesium alloy using combined sparking sculpture and etching route. Applied Surface Science. 2016;389:80–87.
  56. Jiang D., Xia X., Hou J., Cai G., Zhang X., Dong Z. A novel coating system with self-reparable slippery surface and active corrosion inhibition for reliable protection of Mg alloy. Chemical Engineering Journal. 2019;373:285–297.
  57. Jiang D., Zhou H., Wan S., Cai G.-Y., Dong Z.-H. Fabrication of superhydrophobic coating on magnesium alloy with improved corrosion resistance by combining micro-arc oxidation and cyclic assembly. Surf. Coat. Technol. 2018;339:155–166.
  58. Zhang Y., Feyerabend F., Tang S., Hu J., Lu X., Blawert C., Lin T. A study of degradation resistance and cytocompatibility of super-hydrophobic coating on magnesium. Materials Science and Engineering: C. 2017;78:405–412.
  59. Cui X., Lin X., Liu C., Yang R., Zheng X., Gong M. Fabrication and corrosion resistance of a hydrophobic micro-arc oxidation coating on AZ31 Mg alloy. Corros. Sci. 2015;90:402–412.
  60. Gnedenkov S.V., Egorkin V.S., Sinebryukhov S.L., Vyaliy I.E., Pashinin A.S., Emelyanenko A.M., Boinovich L.B. Formation and electrochemical properties of the superhydrophobic nanocomposite coating on PEO pretreated Mg-Mn-Ce magnesium alloy. Surf. Coat. Technol. 2013;232:240–246.
  61. Boinovich L.B., Emelyanenko A.M., Pashinin A.S., Gnedenkov S.V., Egorkin V.S., Sinebryukhov S.L. Mg alloy treatment for superhydrophobic anticorrosion coating formation. Surface Innovations. 2013;1(3):162–172.
  62. Li J., Wang C., Sun H., Li X. Preparation of Superhydrophobic Magnesium Alloy Surface via Fabrication of Micro/Nano Binary Structure and Modification with Perfluropolysilane. Nanoscience and Nanotechnology Letters. 2018;10(2):291–296.
  63. Arun S., Sooraj P.N., Hariprasad S., Arunnellaiappan T., Rameshbabu N. Fabrication of superhydrophobic coating on PEO treated zirconium samples and its corrosion resistance. Materials Today: Proceedings. 2020;27:2056–2060.
  64. Aktug S.L., Durdu S., Aktas S., Yalcin E., Usta M. Characterization and investigation of in vitro properties of antibacterial copper deposited on bioactive ZrO2 coatings on zirconium. Thin Solid Films. 2019;681:69–77.
  65. Boinovich L.B., Gnedenkov S.V., Alpysbaeva D.A., Egorkin V.S., Emelyanenko A.M., Sinebryukhov S.L., Zaretskaya A.K. Corrosion resistance of composite coatings on low-carbon steel containing hydrophobic and superhydrophobic layers in combination with oxide sublayers. Corrosion Science. 2012;55:238–245.
  66. Fu J., Sun Y., Ji Y., Zhang J. Fabrication of robust ceramic based superhydrophobic coating on aluminum substrate via plasma electrolytic oxidation and chemical vapor deposition methods. Journal of Materials Processing Technology. 2022;306:117641.
  67. Gnedenkov S.V., Sinebryukhov S.L., Egorkin V.S., Vyaliy I.E. Wettability and electrochemical properties of the highly hydrophobic coatings on PEO-pretreated aluminum alloy. Surface and Coatings Technology. 2016;307:1241–1248.
  68. Egorkin V.S., Mashtalyar D.V., Gnedenkov A.S., Filonina V.S., Vyaliy I.E., Nadaraia K.V., Imshinetskiy I.M., Belov E.A., Izotov N.V. et al. Icephobic Performance of Combined Fluorine-Containing Composite Layers on Al-Mg-Mn–Si Alloy Surface. Polymers. 2021;13(21):3827.
  69. Zou Y., Wang Y., Xu S., Jin T., Wei D., Ouyang J., Jia D., Zhou Y. Superhydrophobic double-layer coating for efficient heat dissipation and corrosion protection. Chem. Eng. J. 2019;362:638–649.
  70. Gnedenkov S.V., Sinebryukhov S.L., Egorkin V.S., Mashtalyar D.V., Emelyanenko A.M., Boinovich L.B. Electrochemical properties of the superhydrophobic coatings on metals and alloys. Journal of the Taiwan Institute of Chemical Engineers. 2014;45(6):3075–3080.
  71. Gnedenkov S.V., Sinebryukhov S.L., Egorkin V.S., Mashtalyar D.V., Emelyanenko A.M., Alpysbaeva D.A., Boinovich L.B. Features of the occurrence of electrochemical processes in contact of sodium chloride solutions with the surface of superhydrophobic coatings on titanium. Russ. J. Electrochem+. 2012;48(3):336–345.
  72. Gnedenkov S.V., Sinebryukhov S.L., Egorkin V.S., Mashtalyar D.V., Alpysbaeva D.A., Boinovich L.B. Wetting and electrochemical properties of hydrophobic and superhydrophobic coatings on titanium. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2011;383(1/3):61–66.
  73. Belov E.A., Nadaraia K.V., Mashtalyar D.V., Sinebryukhov S.L., Gnedenkov S.V. Anti-icing composite fluoropolymer coatings on titanium. St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2022;15(3.1):204–209.
  74. Jiang J.Y., Xu J.L., Liu Z.H., Deng L., Sun B., Liu S.D., Wang L., Liu H.Y. Preparation, corrosion resistance and hemocompatibility of the superhydrophobic TiO2 coatings on biomedical Ti-6Al-4V alloys. Applied Surface Science. 2015;347:591–595.
  75. Chen G., Wang Y., Zou Y., Jia D., Zhou Y. A fractal-patterned coating on titanium alloy for stable passive heat dissipation and robust superhydrophobicity. Chemical Engineering Journal. 2019;374:231–241.
  76. Wang S., Wang Y., Zou Y., Wu Y., Chen G., Ouyang J., Jia D., Zhou Y. A self-adjusting PTFE/TiO2 hydrophobic double-layer coating for corrosion resistance and electrical insulation. Chemical Engineering Journal. 2020;402:126116.
  77. Shen Y., Wu X., Tao J., Zhu C., Lai Y., Chen Z. Icephobic materials: Fundamentals, performance evaluation, and applications. Progress in Materials Science. 2019;103:509–557.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences