Embedding of magnetoactive particles from slurry electrolytes into PEO coatings on titanium

Abstract

The paper summarizes the literature data on plasma electrolytic treatment of titanium in electrolytes with dispersed magnetoactive particles in order to form surface structures with certain magnetic properties. The compositions of electrolytes, process parameters and magnetic properties of the resulting coatings are presented. Depending on the chemical nature and characteristics of the particles, an inert or reactive mechanism of their introduction from the electrolyte into the growing coatingsis carried out. It is shown that metal oxide particles located on the surface, mainly in pores, and in the coating bulk make the main contribution to the magnetic properties of the samples. By changing the electrolyte formula and the concentration of components, it is possible to control the composition of the particles and, accordingly, the magnetic characteristics of the coating.

Full Text

Restricted Access

About the authors

M. V. Adigamova

Institute of Chemistry, FEB RAS

Author for correspondence.
Email: adigamova@ich.dvo.ru
ORCID iD: 0000-0002-0341-9881

Candidate of Sciences in Chemistry, Senior Researcher

Russian Federation, Vladivostok

I. V. Lukiyanchuk

Institute of Chemistry, FEB RAS

Email: lukiyanchuk@ich.dvo.ru
ORCID iD: 0000-0003-1680-4882

Candidate of Sciences in Chemistry, Senior Researcher

Russian Federation, Vladivostok

V. P. Morozova

Institute of Chemistry, FEB RAS

Email: morozova@ich.dvo.ru
ORCID iD: 0000-0003-4355-820X

Researcher

Russian Federation, Vladivostok

I. V. Malyshev

Institute of Chemistry, FEB RAS

Email: malishev@ich.dvo.ru
ORCID iD: 0000-0002-0826-0291

Candidate of Sciences in Chemistry, Researcher

Russian Federation, Vladivostok

V. S. Egorkin

Institute of Chemistry, FEB RAS

Email: egorkin@ich.dvo.ru
ORCID iD: 0000-0001-5489-6832

Candidate of Sciences in Chemistry, Senior Researcher

Russian Federation, Vladivostok

I. A. Tkachenko

Institute of Chemistry, FEB RAS

Email: tkachenko@ich.dvo.ru
ORCID iD: 0000-0002-1770-1546

Candidate of Sciences in Chemistry, Senior Researcher

Russian Federation, Vladivostok

S. L. Sinebryukhov

Institute of Chemistry, FEB RAS

Email: sls@ich.dvo.ru
ORCID iD: 0000-0002-0963-0557

Corresponding Member of RAS, Doctor of Sciences in Chemistry, Associate Professor, Deputy Director

Russian Federation, Vladivostok

S. V. Gnedenkov

Institute of Chemistry, FEB RAS

Email: svg21@hotmail.com
ORCID iD: 0000-0003-1576-8680

Corresponding Member of RAS, Doctor of Sciences in Chemistry, Professor, Director

Russian Federation, Vladivostok

References

  1. Pukhir G.A., Mahmoud M.Sh., Nasonova N.V., Lynkov L.M. Protective properties of screens of electromagnetic radiation of a microwave range on the basis of the combined, dielectric and magnetic powder components. Doklady BGUIR. 2011;60(6):94–97. (In Russ.).
  2. Roslyakov I.V., Napolsky K.S., Eliseev A.A. et al. Synthesis of magnetic nanoparticles with controlled anisotropy of functional properties in a matrix of porous aluminum oxide. Russian Nanotechnologies. 2009;4(3/4):69–72. (In Russ.).
  3. Abdulhadi H.D.A., Al-Mashatt E.A.A., Bogush V.A. et al. Electromagnetic screens based on aluminum, its oxides and carbon fibers. Technologies, designs and properties: monograph. Minsk: Bestprint; 2021. 120 p. (In Russ.).
  4. Vladimirov B.V., Krit B.L., Lyudin V.B. et al. Microarc discharge oxidizing of magnesium alloys: a review. Surface Engineering and Applied Electrochemistry. 2014;50(3):195–232. https://doi.org/10.3103/S1068375514030090.
  5. Sibileva S.V., Kozlova L.S. Review of technologies of applying coatings to titanium alloys by plasma electrolytic oxidation. Aviation Materials and Technologies. 2016; 44(S2):3–10. (In Russ.). https://doi.org/10.18577/2071-9140-2016-0-S2-3-10.
  6. Shrestha S., Dunn B.D. Advanced plasma electrolytic oxidation treatment for protection of light weight materials and structures in a space environment. Surface World. 2007;11:4044.
  7. Borisov A.M., Krit B.L., Lyudin V.B. et al. Microarc oxidation in slurry electrolytes: A review. Surface Engineering and Applied Electrochemistry. 2016;52:50–78. https://doi.org/10.3103/S106837551601004X.
  8. Jiang B.L., Wang Y.M. Plasma electrolytic oxidation treatment of aluminum and titanium alloys. Surface Engineering of Light Alloys: Aluminum, Magnesium and Titanium Alloys. 2010:110–154. https://doi.org/10.1533/9781845699451.2.110.
  9. Yang C., Chen P., Wu W et al. A Review of Corrosion-Resistant PEO Coating on Mg Alloy. Coatings. 2024;14(4):451. https://doi.org/10.3390/coatings14040451.
  10. Rakoch A.G., Strekalina D.M., Gladkova A.A. Wear-resistant coatings obtained on titanium alloy VT6 by plasma electrolytic oxidation. Russian Journal of Non-Ferrous Metals. 2016;2:80–84. (In Russ.). https://doi.org/10.17073/1997-308X-2016-1-44-50.
  11. Tang H., Xin T.Z., Sun Q. at al. Influence of FeSO4 concentration on thermal emissivity of coatings formed on titanium alloy by micro-arc oxidation. Applied Surface Science. 2011;257(24):10839–10844. https://doi.org/10.1016/j.apsusc.2011.07.118.
  12. Yao Z.P., Hu B., Shen Q.X. et al. Preparation of black high absorbance and high emissivity thermal control coating on Ti alloy by plasma electrolytic oxidation. Surface and Coatings Technology. 2014;253:166–170. https://doi.org/10.1016/j.surfcoat.2014.05.032.
  13. Kurze P., Krysmann W., Schreckenbach J. et al. Coloured ANOF layers on aluminium. Crystal Research and Technology. 1987;22(1):53–58. https://doi.org/10.1002/crat.2170220115.
  14. Terleeva O.P., Sharkeev Yu.P., Slonova A.I. et al. Effect of microplasma modes and electrolyte composition on micro-arc oxidation coatings on titanium for medical applications. Surface and Coatings Technology. 2010;205(6):1723–1729. https://doi.org/10.1016/j.surfcoat.2010.10.019.
  15. Samadi P., Witonska I.A. Plasma electrolytic oxidation layers as alternative supports for metallic catalysts used in oxidation reaction for environmental application. Catalysis Communications. 2023;181:106722. https://doi.org/10.1016/j.catcom.2023.106722.
  16. Egorkin V.S., Mashtalyar D.V., Gnedenkov A.S. et al. Icephobic performance of combined fluorine-containing composite layers on Al-Mg-Mn-Si alloy surface. Polymers. 2021;13(21):3827. https://doi.org/10.3390/polym13213827.
  17. Mikheev A.E., Savelyev D.O., Ravodina D.V., Girn A.V. Application of optically black lightabsorbing coating on aluminum and titanium alloys. Siberian Aerospace Journal. 2022;23(2):305–314. (In Russ.). https://doi.org/10.31772/2712-8970-2022-23-2-305-314.
  18. Jin F.Y., Tong H.H., Li J. et al. Structure and microwave-absorbing properties of Fe-particle containing alumina prepared by micro-arc discharge oxidation. Surface and Coatings Technology. 2006;201:292–295. https://doi.org/10.1016/j.surfcoat.2005.11.116.
  19. Jagminas A., Ragalevicius R., Mazeika K. et al. A new strategy for fabrication Fe2O3/SiO2 composite coatings on the Ti substrate. Journal of Solid State Electrochemistry. 2010;14(2):271–277. https://doi.org/10.1007/s10008-009-0820-7.
  20. Gnedenkov S.V., Sinebryukhov S.L., Tkachenko I.A. et al. Magnetic properties of surface layers formed on titanium by plasma electrolytic oxidation. Inorganic Materials: Applied Research. 2012;5:55–62. https://doi.org/10.1134/S2075113312020062.
  21. Rogov A.B., Terleeva O.P., Mironov I.V., Slonova A.I. Iron-containing coatings obtained by microplasma method on aluminum with usage of homogeneous electrolytes. Applied Surface Science. 2012;258(7):2761. https://doi.org/10.1016/j.apsusc.2011.10.128.
  22. Baranova T.A., Chubenko A.K., Ryabikov A.E. et al. Microarc synthesis of nanostructured radiation-absorbing coatings on aluminum and titanium surfaces. IOP Conference Series: Materials Science and Engineering. 2018;286:012037. https://doi.org/10.1088/1757-899X/286/1/012037.
  23. Rudnev V.S., Ustinov A.Yu., Lukiyanchuk I.V. et al. Magnetoactive oxide layers formed on titanium by plasma electrolytic technique. Protection of Metals and Physical Chemistry of Surfaces. 2010;46(5):566–572. https://doi.org/10.1134/S2070205110050114.
  24. Adigamova M.V., Lukiyanchuk I.V., Morozova V.P. et al. Fe and/or Co-containing coatings on titanium: Features of plasma electrolytic formation, composition, and magnetic properties. Surface and Coatings Technology. 2022;446:128790. https://doi.org/10.1016/j.surfcoat.2022.128790.
  25. Kharitonsky P.V., Frolov A.M., Rudnev V.S. et al. Magnetic properties of iron containing coatings formed by plasma electrolytic oxidation. Bulletin of the Russian Academy of Sciences: Physics. 2010;74(10):1404–1406. (In Russ.). https://doi.org/10.4028/www.scientific.net/SSP.168-169.289.
  26. Rudnev V.S., Adigamova M.V., Lukiyanchuk I.V. et al. The effect of the conditions of formation on ferromagnetic properties of iron-containing oxide coatings on titanium. Protection of Metals and Physical Chemistry of Surfaces. 2012;48(5):543–552. https://doi.org/10.1134/S2070205112050097.
  27. Adigamova M.V., Rudnev V.S., Lukiyanchuk I.V. et al. The effect of Fe-containing colloid particles in electrolyte on the composition and magnetic characteristics of oxide layers on titanium formed using the method of plasma electrolytic oxidation. Protection of Metals and Physical Chemistry of Surfaces. 2016;52(3):526–531. https://doi.org/10.1134/S2070205116030023.
  28. Rudnev V.S., Kharitonskii P.V., Kosterov A. et al. Magnetism of Fe-doped Al2O3 and TiO2 layers formed on aluminum and titanium by plasma-electrolytic oxidation. Journal of Alloys and Compounds. 2020;816:152579. https://doi.org/10.1016/j.jallcom.2019.152579.
  29. Rudnev V.S., Adigamova M.V., Lukiyanchuk I.V. et al. Oxide coatings with ferromagnetic characteristics on Al, Ti, Zr and Nb. Surface and Coatings Technology. 2020;381:125180. https://doi.org/10.1016/j.surfcoat.2019.125180.
  30. Adigamova M.V., Lukiyanchuk. I.V., Tkachenko I.A., Morozova V.P. Magnetic properties of Fe + Ni-containing TiO2-layer/Ti composites. Protection of Metals and Physical Chemistry of Surfaces. 2022;58( 3):510–518. https://doi.org/10.1134/S2070205122030029.
  31. Xiaopeng Lu, Carsten Blawert, Yuanding Huang et al. Plasma electrolytic oxidation coatings on Mg alloy with addition of SiO2 particles. Electrochimica Acta. 2016;187:20–33. https://doi.org/10.1016/j.electacta.2015.11.033.
  32. Adigamova M.V., Malyshev I.V., Lukiyanchuk I.V., Tkachenko I.A. A novel approach to obtaining LaMnO3/TiO2/Ti composites: Features of plasma electrolytic formation, composition, and magnetic properties. Journal of Alloys and Compounds. 2023;967:171675. https://doi.org/10.1016/j.jallcom.2023.171675.
  33. Adigamova M.V., Malyshev I.V., Lukiyanchuk I.V., Tkachenko I.A., Saiankina K.A. Effect of lanthanum manganite particles on the structure and magnetic behavior of PEO coatings on titanium. Materials Chemistry and Physics. 2024;320:129479. https://doi.org/10.1016/j.matchemphys.2024.129479.
  34. Demin R.V., Koroleva L.I., Szymszak R., Szymszak H. Experimental evidence for a magnetic two-phase state in manganites. Journal of Experimental and Theoretical Physics Letters. 2002;75:331–335.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. SEM images of the surface and pores of PEO coatings formed for 5 min in electrolytes containing PBWFe (a, g), PBWCo (b, d) and PBWNi (c, e) hydroxides.

Download (199KB)
3. Fig. 2. Dependences of the magnetization of samples on the magnitude of the external magnetic field at 300 K (a), the surface relief of the Fe-containing sample (b) and the corresponding distribution of magnetic field lines (c)

Download (133KB)
4. Fig. 3. SEM images of pores of coatings formed on titanium for 10 min in PBWFeCo (a), PBWFeNi (b) and PBWCoNi (c) electrolytes. Field dependences of magnetization of samples are shown (d)

Download (156KB)
5. Fig. 4. Effect of electrolyte composition on the concentration of Fe and Co in coating pores (a), coercive force and saturation magnetization (b)

Download (127KB)
6. Fig. 5. SEM image of powder (insert) and cobalt particle size distribution (a). Field and temperature (insert) dependences of sample magnetization are shown (b)

Download (80KB)
7. Fig. 6. Distribution of LMO particles by size (a), magnetic properties of synthesized powders (b) and PEO layers formed in electrolyte suspensions (c)

Download (111KB)

Copyright (c) 2024 Russian Academy of Sciences