Chitosan-based composite materials – sorbents for the purification of liquid radioactive waste

Abstract

The approaches to production of chitosan-containing composites designed to remove radionuclides from aqueous solutions were considered in this review. Methods for obtaining chitosan-based sorbents for the removal of metals, the main sources of radioactive contamination (U, Sr, Cs), are described. The efficiency of using a biopolymer for these purposes is significantly increased as a result of physical or chemical modification, as well as the introduction of inorganic fillers. From the sorbents which were considered, the cheapest and most effective Sr and Cs materials for sorption are highlighted and simplified schemes for their production are given. The main purpose of this review is to provide up-to-date information on the most important properties of composites in combination with inorganic fillers and to show their advantages as sorbents in the purification of contaminated aqueous solutions.

Full Text

Restricted Access

About the authors

L. А. Zemskova

Institute of Chemistry, FEB RAS

Author for correspondence.
Email: zemskova@ich.dvo.ru
ORCID iD: 0000-0001-9128-4851

Doctor of Sciences in Chemistry, Leading Researcher

Russian Federation, Vladivostok

A. М. Egorin

Institute of Chemistry, FEB RAS

Email: andrey.egorin@yandex.ru
ORCID iD: 0000-0003-2599-2213

Candidate of Sciences in Chemistry, Senior Researcher

Russian Federation, Vladivostok

References

  1. Ahmed S., Ikram S. Chitosan: Derivatives, Composites and Applications. John Wiley & Sons; 2017. 519 p. ISBN 9781119364801.
  2. Wiącek A.E. (ed.). Chitosan, Chitosan Derivatives and Their Applications. MDPI – Multidisciplinary Digital Publishing Institute; 2024. doi: 10.3390/books978-3-7258-0253-1.
  3. Guibal E. Interactions of metal ions with chitosan-based sorbents: a review. Separation and Purification Technology. 2004;38(1):43–74. doi: 10.1016/j.seppur.2003.10.004.
  4. Crini G. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Progress in Polymer Science. 2005;30(1):38–70. doi: 10.1016/j.progpolymsci.2004.11.002.
  5. Gerente C., Lee V.K., Cloirec P.L., McKay G. Application of Chitosan for the Removal of Metals From Wastewaters by Adsorption – Mechanisms and Models Review. Critical Reviews in Environmental Science and Technology. 2007;37(1):41–127. https://doi.org/10.1080/10643380600729089.
  6. Bhatnagar A., Sillanpää M. Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater – A short review. Advances in Colloid and Interface Science. 2009;152(1):26–38. doi: 10.1016/j.cis.2009.09.003.
  7. Elwakeel K.Z. Environmental Application of Chitosan Resins for the Treatment of Water and Wastewater: A Review. Journal of Dispersion Science and Technology. 2010;31(3):273–288. https://doi.org/10.1080/01932690903167178.
  8. Suyambulingam I., Gangadhar L., Sana S.S., Divakaran D., Siengchin S., Kurup L.A., Iyyadurai J., Albert Bernad Noble K.E. Chitosan Biopolymer and Its Nanocomposites: Emerging Material as Adsorbent in Wastewater Treatment. Advances in Materials Science and Engineering. 2023;2023(1):9387016. doi: 10.1155/2023/9387016.
  9. Gomez-Maldonado D., Vega Erramuspe I.B., Peresin M.S. Natural Polymers as Alternative Adsorbents and Treatment Agents for Water Remediation. BioResources. 2019;14(4):10093–10160. doi: 10.15376/biores.14.4.Gomez-Maldonado.
  10. Wang J., Chen C. Chitosan-based biosorbents: Modification and application for biosorption of heavy metals and radionuclides. Bioresource Technology. 2014;160:129–141. https://doi.org/10.1016/j.biortech.2013.12.110.
  11. Zhang L., Zeng Y., Cheng Z. Removal of heavy metal ions using chitosan and modified chitosan: A review. Journal of Molecular Liquids. 2016;214:175–191. doi: 10.1016/j.molliq.2015.12.013.
  12. Wan Ngah W.S., Teong L.C., Hanafiah M.A.K.M. Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydrate Polymers. 2011;83(4):1446–1456. doi: 10.1016/j.carbpol.2010.11.004.
  13. Crini G., Badot P.M. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Progress in Polymer Science. 2008;33(4):399–447. doi: 10.1016/j.progpolymsci.2007.11.001.
  14. Varma A.J., Deshpande S.V., Kennedy J.F. Metal complexation by chitosan and its derivatives: a review. Carbohydrate Polymers. 2004;55(1):77–93. doi: 10.1016/j.carbpol.2003.08.005.
  15. Kumar S., Ye F., Dobretsov S., Dutta J. Chitosan Nanocomposite Coatings for Food, Paints, and Water Treatment Applications. Applied Sciences. 2019;9(12):2409. doi: 10.3390/app9122409.
  16. Sarkar S., Guibal E., Quignard F., SenGupta A.K. Polymer-supported metals and metal oxide nanoparticles: synthesis, characterization, and applications. J. Nanopart. Res. 2012;14(2):715. doi: 10.1007/s11051-011-0715-2.
  17. Zhang Y., Wu B., Xu H., Liu H., Wang M., He Y., Pan B. Nanomaterials-enabled water and wastewater treatment. NanoImpact. 2016;3/4:22–39. doi: 10.1016/j.impact.2016.09.004.
  18. Shukla S.K., Mishra A.K., Arotiba O.A., Mamba B.B. Chitosan-based nanomaterials: A state-of-the-art review. International Journal of Biological Macromolecules. 2013;59:46–58. doi: 10.1016/j.ijbiomac.2013.04.043.
  19. Reddy D.H.K., Lee S.-M. Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Advances in Colloid and Interface Science. 2013;201/202:68–93. doi: 10.1016/j.cis.2013.10.002.
  20. Gómez-Pastora J., Bringas E., Ortiz I. Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications. Chemical Engineering Journal. 2014;256:187–204. doi: 10.1016/j.cej.2014.06.119.
  21. Muzzarelli R.A.A. Potential of chitin/chitosan-bearing materials for uranium recovery: An interdisciplinary review. Carbohydrate Polymers. 2011;84(1):54–63. doi: 10.1016/j.carbpol.2010.12.025.
  22. Hasan S., Ghosh T.K., Prelas M.A., Viswanath D.S., Boddu V.M. Adsorption of uranium on a novel bioadsorbent-chitosan-coated perlite. Nuclear Technology. 2007;159(1):59–71. https://doi.org/10.13182/NT07-A3856.
  23. Zhou L., Shang C., Liu Z., Huang G., Adesina A.A. Selective adsorption of uranium(VI) from aqueous solutions using the ion-imprinted magnetic chitosan resins. Journal of Colloid and Interface Science. 2012;366(1):165–172. doi: 10.1016/j.jcis.2011.09.069.
  24. Zhou L., Jia Y., Peng J., Liu Z., Al-Zaini E. Competitive adsorption of uranium(VI) and thorium(IV) ions from aqueous solution using triphosphate-crosslinked magnetic chitosan resins. J. Radioanal. Nucl. Chem. 2014;302(1):331–340. doi: 10.1007/s10967-014-3125-y.
  25. Zhou L., Li Z., Zeng K., Chen Q., Wang Y., Liu Z., Adesina A.A. Immobilization of in-situ formed Ni(OH)2 nanoparticles in chitosan beads for efficient removal of U(VI) from aqueous solutions. J. Radioanal .Nucl. Chem. 2017;314(1):467–476. doi: 10.1007/s10967-017-5407-7.
  26. Wang J., Ma R., Li L., Gu P., Wang X. Chitosan modified molybdenum disulfide composites as adsorbents for the simultaneous removal of U(VI), Eu(III), and Cr(VI) from aqueous solutions. Cellulose. 2020;27(3):1635–1648. doi: 10.1007/s10570-019-02885-0.
  27. Ding L., Tao C., Zhang S., Zheng B., Dang Z., Zhang L. One-step synthesis of phospho-rich, silica-enhanced chitosan aerogel for the efficient adsorption of uranium(VI). International Journal of Biological Macromolecules. 2024;259:129101. doi: 10.1016/j.ijbiomac.2023.129101.
  28. Ao X., Zhou L., Jin J., Liu Y., Ouyang J., Liu Z., Shehzad H. Macroporous and ultralight polyethyleneimine-grafted chitosan/nano-TiO2 foam as a novel adsorbent with antibacterial activity for the efficient U(VI) removal. International Journal of Biological Macromolecules. 2023;253:126966. doi: 10.1016/j.ijbiomac.2023.126966.
  29. Majeed M.D., Roushani M. Synthesis and Characterization of Novel Chitosan/Graphene Oxide/Poly (Vinyl Alcohol) Aerogel Nanocomposite for High Efficiency Uranium (VI) Removal from Wastewaters. J. Clust. Sci. 2024;35(3):903–914. doi: 10.1007/s10876-023-02523-7.
  30. Xia M., Gao R., Xu G., You Y., Li X., Dou J., Fan F. Fabrication and investigation of novel monochloroacetic acid fortified, tripolyphosphate-crosslinked chitosan for highly efficient adsorption of uranyl ions from radioactive effluents. Journal of Hazardous Materials. 2022;431:128461. doi: 10.1016/j.jhazmat.2022.128461.
  31. Li Y., Dai Y., Tao Q., Gao Z., Xu L. Ultrahigh efficient and selective adsorption of U(VI) with amino acids-modified magnetic chitosan biosorbents: Performance and mechanism. International Journal of Biological Macromolecules. 2022;214:54–66. doi: 10.1016/j.ijbiomac.2022.06.061.
  32. Hizal J., Kanmaz N., Yılmazoğlu M. Evaluation of humic acid embedded Chitosan/PVA composite performance in the removal of uranyl ions. Materials Chemistry and Physics. 2023;299:127483. doi: 10.1016/j.matchemphys.2023.127483.
  33. Zhu R., Zhang C., Bi C., Zhu L., Wang C., Wang Y., Liu L., Ma F., Dong H. Highly efficient and antibacterial uranium adsorbents derived from disubstituted amidoxime functionalized chitosan. Cellulose. 2023;30(3):1669–1684. doi: 10.1007/s10570-022-04996-7.
  34. Abukhadra M.R., Eid M.H., El-Meligy M.A., Sharaf M., Soliman A.T. Insight into chitosan/mesoporous silica nanocomposites as eco-friendly adsorbent for enhanced retention of U(VI) and Sr(II) from aqueous solutions and real water. International Journal of Biological Macromolecules. 2021;173:435–444. doi: 10.1016/j.ijbiomac.2021.01.136.
  35. Kamble P., Sinharoy P., Pahan S., Neogy S., Ananthanarayanan A., Banerjee D., Sugilal G. Synthesis and characterization of Chitosan-sodium titanate nanocomposite beads for separation of radionuclides from aqueous radioactive waste. J. Radioanal. Nucl. Chem. 2021;327(2):691–698. doi: 10.1007/s10967-020-07548-0.
  36. Dakroury G.A., El-Shazly E.A.A., Hassan H.S. Preparation and characterization of ZnO/Chitosan nanocomposite for Cs(I) and Sr(II) sorption from aqueous solutions. J. Radioanal. Nucl. Chem. 2021;330(1):159–174. doi: 10.1007/s10967-021-07935-1.
  37. Egorin A., Tokar E., Matskevich A., Ivanov N., Tkachenko I., Sokolnitskaya T., Zemskova L. Composite Magnetic Sorbents Based on Iron Oxides in Different Polymer Matrices: Comparison and Application for Removal of Strontium. Biomimetics. 2020;5(2):22. doi: 10.3390/biomimetics5020022.
  38. Zemskova L., Egorin A., Tokar E., Ivanov V., Bratskaya S. New Chitosan/Iron Oxide Composites: Fabrication and Application for Removal of Sr2+ Radionuclide from Aqueous Solutions. Biomimetics. 2018;3(4):39. doi: 10.3390/biomimetics3040039.
  39. Kosyakov V.N., Veleshko I.E., Yakovlev N.G., Gorovoi L.F. Preparation, Properties, and Application of Modified Mikoton Sorbents. Radiochemistry. 2004;46(4):385–390. doi: 10.1023/B:RACH.0000039117.10307.d0.
  40. Vincent T., Vincent C., Barré Y., Guari Y., Saout G.L., Guibal E. Immobilization of metal hexacyanoferrates in chitin beads for cesium sorption: synthesis and characterization. J. Mater. Chem. A. 2014;2(26):10007–10021. doi: 10.1039/C4TA01128G.
  41. Egorin A., Tokar E., Zemskova L. Chitosan-ferrocyanide sorbent for Cs-137 removal from mineralized alkaline media. Radiochimica Acta. 2016;104(9):657–661. doi: 10.1515/ract-2015-2536.
  42. Zemskova L., Egorin A., Tokar E., Ivanov V. Chitosan-based biosorbents: immobilization of metal hexacyanoferrates and application for removal of cesium radionuclide from aqueous solutions. J. Sol-Gel Sci. Technol. 2019;92(2):459–466. doi: 10.1007/s10971-019-05019-x.
  43. Fujisaki T., Kashima K., Hagiri M., Imai M. Isothermal Adsorption Behavior of Cesium Ions in a Novel Chitosan‐Prussian Blue‐Based Membrane. Chem. Eng. & Technol. 2019;42(4):910–917. doi: 10.1002/ceat.201800603.
  44. Bratskaya S., Privar Y., Slobodyuk A., Shashura D., Marinin D., Mironenko A., Zheleznov V., Pestov A. Carbohydrate Polymers. 2019;209:1–9. doi: 10.1016/j.carbpol.2018.12.094.
  45. Vinogradov I.I., Andreev E.V., Yushin N.S., Sokhatskii A.S., Altynov V.A., Gustova M.V., Vershinina T.N., Zin’kovskaya I., Nechaev A.N., Apel’ P.Y. Theor. Found.Chem. Eng. 2023;57(4):549–562. doi: 10.1134/S0040579523040498.
  46. Tokar’ E., Zemskova L., Tutov M., Tananaev I., Dovhyi I., Egorin A. Development and practical evaluation of the scheme for 137Cs concentrating from seawater using chitosan and mixed ferrocyanides of Zn-K and Ni-K. J. Radioanal. Nucl. Chem. 2020;325(2):567–575. doi: 10.1007/s10967-020-07248-9.
  47. Zemskova L., Tokar E., Shlyk D., Egorin A. Sorbents based on Ni(OH)2/chitosan, immobilization of metal hexacyanoferrates, and application for removal of radionuclide Cs from aqueous solutions. J. Sol-Gel Sci. Technol. 2022;108(2):250–255. doi: 10.1007/s10971-022-05861-6.
  48. Roh H., Kim Y., Kim Y.K., Harbottle D., Lee J.W. Amino-functionalized magnetic chitosan beads to enhance immobilization of potassium copper hexacyanoferrate for selective Cs+ removal and facile recovery. RSC Adv. 2019;9(2):1106–1114. doi: 10.1039/C8RA09386E.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Distribution of radioactive elements mentioned in papers published between 2019 and 2024.

Download (85KB)
3. Fig. 2. Scheme for obtaining chitosan sorbents containing iron oxides (a); holding the magnetic sorbent with a permanent magnet (b)

Download (141KB)
4. Fig. 3. Scheme for obtaining composite sorbents based on zinc ferrocyanide (ZnFOC) and nickel ferrocyanide (NiFOC)

Download (100KB)
5. Fig. 4. Stability of ferrocyanide sorbents under static conditions depending on the exposure time in a 3 M NaNO3 solution, pH 13; 1 – chitosan composite sorbent filled with nickel FOC, 2 – inorganic sorbent Termoksid-35, 3 – nickel FOC powder [42]

Download (101KB)

Copyright (c) 2024 Russian Academy of Sciences