Laboratory of bioassays and mechanism of action of bioactive substances: recent advances in bioactive compound

Cover Page

Cite item

Full Text

Abstract

The main scientific direction of the laboratory of bioassays and mechanism of action of biologically active compounds of the G.B. Elyakov Pacific Institute of Bioorganic Chemistry, FEB RAS is the study on the biological activity of natural and synthetic compounds. The review briefly examines the laboratory’s main achievements over the past five years.

Full Text

Restricted Access

About the authors

Elena L. Chaykina

G.B. Elyakov Pacific Institute of Bioorganic Chemistry, FEB RAS

Email: chaykin.dima@yandex.ru

Researcher

Russian Federation, Vladivostok

Irina G. Agafonova

G.B. Elyakov Pacific Institute of Bioorganic Chemistry, FEB RAS

Email: agafonova@piboc.dvo.ru
ORCID iD: 0000-0002-5587-2610

Candidate of Sciences in Biology, Senior Researcher

Russian Federation, Vladivostok

Ekaterina А. Yurchenko

G.B. Elyakov Pacific Institute of Bioorganic Chemistry, FEB RAS

Email: eyurch@piboc.dvo.ru
ORCID iD: 0000-0001-7737-0980

Candidate of Sciences in Biology, Senior Researcher

Russian Federation, Vladivostok

Ekaterina А. Chingizova

G.B. Elyakov Pacific Institute of Bioorganic Chemistry, FEB RAS

Email: martyyas@mail.ru
ORCID iD: 0000-0003-0093-5757

Candidate of Sciences in Biology, Senior Researcher

Russian Federation, Vladivostok

Sergey A. Kozlovskiy

G.B. Elyakov Pacific Institute of Bioorganic Chemistry, FEB RAS

Email: sergeimerx@gmail.com
ORCID iD: 0000-0001-9961-8350

Junior Researcher

Russian Federation, Vladivostok

Evgeny A. Pislyagin

G.B. Elyakov Pacific Institute of Bioorganic Chemistry, FEB RAS

Email: pislyagin@hotmail.com
ORCID iD: 0000-0002-3558-0821

Candidate of Sciences in Biology, Senior Researcher

Russian Federation, Vladivostok

Anna L. Burylova

Far Eastern Federal University

Email: anaburylova1@gmail.com

Student

Russian Federation, Vladivostok

Ekaterina S. Menchinskaya

G.B. Elyakov Pacific Institute of Bioorganic Chemistry, FEB RAS

Email: ekaterinamenchinskaya@gmail.com
ORCID iD: 0000-0002-4027-9064

Candidate of Sciences in Biology, Senior Researcher

Russian Federation, Vladivostok

Dmitry L. Aminin

G.B. Elyakov Pacific Institute of Bioorganic Chemistry, FEB RAS

Author for correspondence.
Email: daminin@piboc.dvo.ru
ORCID iD: 0000-0002-1073-4994

Corresponding Member of RAS, Doctor of Sciences in Biology, Head of the Laboratory

Russian Federation, Vladivostok

References

  1. Klykov A. G., Barsukova E. N., Chaikina E. L., Anisimov M. M. Prospects and results of selection of Fagopyrum esculentum Moench for increased flavonoid content. Vestnik of the FEB RAS. 2019;(3):5–16. (In Russ).
  2. Barsukova E. N., Klykov A. G., Chaikina E. L. Using tissue culture to create new forms of Fagopyrum esculentum Moenc. Russian Agricultural Science. 2019;(5):3–6. (In Russ.).
  3. Klykov A., Chaikina E., Anisimov M., Borovaya S., Barsukova E. Rutin content in buckwheat (Fagopyrum esculentum Moench, F. tataricum (L.) Gaertn. and F. cymosum Meissn.) growth in the Far East of Russia. Folia Biologica Geologica. 2020;61(1):61–68.
  4. Barsukova E. N., Klykov A. G., Fisenko P. V., Borovaya S. A., Chaikina E. L. Usage of the method of biotechnology in the selection of buckwheat plants in the Far East. Vestnik of the FEB RAS. 2020;(4):58–66. (In Russ.).
  5. Borovaya S., Klykov A., Barsukova E., Chaikina E. Study of the effect of selective media with high doses of zinc on regeneration ability and rutin accumulation in common buckwheatin. Plants. 2022;11(3):264. https://doi.org/10.3390/plants11030264.
  6. Barsukova E. N., Klykov A. G., Chaikina E. L. Breeding evaluation of buckwheat (Fagopyrum esculentum Moench) varieties obtained using copper and zinc ions. Agricult. Sci. 2023;374(9):84–89. https://doi.org/10.32634/0869-8155-2023-374-9-84-89. (In Russ.).
  7. Agafonova I. G., Kotel’nikov V.N., Gel’tser B. I. Features of structural and functional changes in the thoracic aorta in experimental arterial hypertension. Bull. Exp. Biol. Med. 2022;174(9):289–293. doi: 10.47056/0365-9615-2022-174-9-289-293. (In Russ.).
  8. Agafonova I. G., Kotel’nikov V.N., Gel’tser B. I. Magnetic resonance imaging of the rat brain in assessing the neuroprotective effects of histochrome in experimental arterial hypertension. Bull. Exp. Biol. Med. 2021;172(9):277–282. doi: 10.47056/0365-9615-2021-172-9-277-282. (In Russ.).
  9. The use of histochrome as a neuroprotective agent that prevents diffusion changes in brain tissue at the early stage of development of arterial hypertension: Pat. N2021110258 RF / Agafonova I. G., Mishchenko N. P., Kotelnikov V. N., Geltser B. I.; application 04/12/2021; publ. 02/07/2022. (In Russ.).
  10. Agafonova I. G., Kotelnikov V. N., Geltser B. I., Kolosova N. G., Stonik V. A. Assessment of Combined Therapy of Histochrome and Nebivalol as Angioprotectors on the Background of Experimental Hypertension by Magnetic Resonance Angiography. Appl. Magn. Resonance. 2018;49(2):217–225. https://doi.org/10.1007/s00723-017-0960-3.
  11. Agafonova I. G., Kotelnikov V. N., Geltser B. I. Assessment of the morphofunctional status of the brain of Wistar rats against the background of arterial hypertension using diffusion-weighted tomography. Bull. Exp. Biol. Med. 2021;171(2):247–252. doi: 10.47056/0365-9615-2021-171-2-247-252. (In Russ.).
  12. Chingizova E. A., Menchinskaya E. S., Chingizov A. R., Pislyagin E. A., Girich E. V., Yurchenko A. N., et al. Marine Fungal Cerebroside Flavuside B Protects HaCaT Keratinocytes against Staphylococcus aureus Induced Damage. Mar. Drugs. 2021;19(10):553. https://doi.org/10.3390/md19100553.
  13. Zhuravleva O. I., Chingizova E. A., Oleinikova G. K., Starnovskaya S. S., Antonov A. S., Kirichuk N. N., Menshov A. S., Popov R. S., Kim N. Y., Berdyshev D. V., Chingizov A. R., Kuzmich A. S., Guzhova I. V., Yurchenko A. N., Yurchenko E. A. Anthraquinone Derivatives and Other Aromatic Compounds from Marine Fungus Asteromyces cruciatus KMM 4696 and Their Effects against Staphylococcus aureus. Mar. Drugs. 2023;21(8):431. https://doi.org/10.3390/md210804314.
  14. Yurchenko A. N., Zhuravleva O. I., Khmel O. O., Oleynikova G. K., Antonov A. S., Kirichuk N. N. et al. New Cyclopiane Diterpenes and Polyketide Derivatives from Marine Sediment-Derived Fungus Penicillium antarcticum KMM 4670 and Their Biological Activities. Mar. Drugs. 2023;21(11):584. https://doi.org/10.3390/md21110584.
  15. Zhuravleva O. I., Oleinikova G. K., Antonov A. S., Kirichuk N. N., Pelageev D. N., Rasin A. B. et al. New Antibacterial Chloro-Containing Polyketides from the Alga-Derived Fungus Asteromyces cruciatus KMM 4696. J. Fungi. 2022;8(5):454. https://doi.org/10.3390/jof8050454.
  16. Girich E. V., Rasin A. B., Popov R. S., Yurchenko E. A., Chingizova E. A., Trinh P. T.H. et al. New Tripeptide Derivatives Asperripeptides A-C from Vietnamese Mangrove-Derived Fungus Aspergillus terreus LM.5.2. Mar. Drugs. 2022;20(1):77. https://doi.org/10.3390/md20010077.
  17. Leshchenko E. V., Berdyshev D. V., Yurchenko E. A., Antonov A. S., Borkunov G. V., Kirichuk N. N. et al. Bioactive Polyketides from the Natural Complex of the Sea Urchin-Associated Fungi Penicillium sajarovii KMM 4718 and Aspergillus protuberus KMM 4747. Int. J. Mol. Sci. 2023;24(23):16568. https://doi.org/10.3390/ijms242316568.
  18. Trinh P. T., Yurchenko A. N., Khmel O. O. et al. Cytoprotective Polyketides from Sponge-Derived Fungus Lopadostoma pouzarii. Molecules. 2022;27(21):7650. https://doi.org/10.3390/molecules27217650.
  19. Belousova E. B., Zhuravleva O. I., Yurchenko E. A. et al. New Anti-Hypoxic Metabolites from Co-Culture of Marine-Derived Fungi Aspergillus carneus KMM 4638 and Amphichorda sp. KMM 4639. Biomolecules. 2023;13(5):741. https://doi.org/10.3390/biom13050741.
  20. Kozhushnaya A. B., Kolesnikova S. A., Yurchenko E. A. et al. Rhabdastrellosides A and B: Two New Isomalabaricane Glycosides from the Marine Sponge Rhabdastrella globostellata, and Their Cytotoxic and Cytoprotective Effects. Mar. Drugs. 2023;21(11):554. https://doi.org/10.3390/md21110554.
  21. Guzii A. G., Makarieva T. N., Fedorov S. N., Menshov A. S., Denisenko V. A., Popov R. S., Yurchenko E. A., Menchinskaya E. S. et al. Toporosides A and B, Cyclopentenyl-Containing ω-Glycosylated Fatty Acid Amides, and Toporosides C and D from the Northwestern Pacific Marine Sponge Stelodoryx toporoki. J. Nat. Prod. 2022;85(4):1186–1191. https://doi.org/10.1021/acs.jnatprod.2c00130.
  22. Yurchenko E. A., Kolesnikova S. A., Lyakhova E. G., Menchinskaya E. S., Pislyagin E. A., Chingizova E. A., Aminin D. L. Lanostane Triterpenoid Metabolites from a Penares sp. Marine Sponge Protect Neuro-2a Cells against Paraquat Neurotoxicity. Molecules. 2020;25(22):5397. https://doi.org/10.3390/molecules25225397.
  23. Yurchenko E. A., Menchinskaya E. S., Pislyagin E. A., Chingizova E. A., Girich E. V., Yurchenko A. N. et al. Cytoprotective Activity of p-Terphenyl Polyketides and Flavuside B from Marine-Derived Fungi against Oxidative Stress in Neuro-2a Cells. Molecules. 2021;26(12):3618. https://doi.org/10.3390/molecules26123618.
  24. Yurchenko E. A., Khmel O. O., Nesterenko L. E., Aminin D. L. The Kelch/Nrf2 Antioxidant System as a Target for Some Marine Fungal Metabolites. Oxygen. 2023;3 (4):374–385. https://doi.org/10.3390/oxygen3040024.
  25. Aminin D., Polonik S. 1,4-Naphthoquinones: Some Biological Properties and Application. Chem. Pharm. Bull. 2020;68(1):46–57. https://doi.org/10.1248/cpb.c19-00911.
  26. Sabutski Y. E., Menchinskaya E. S., Shevchenko L. S., Chingizova E. A., Chingizov A. R., Popov R. S. et al. Synthesis and Evaluation of Antimicrobial and Cytotoxic Activity of Oxathiine-Fused Quinone-Thioglucoside Conjugates of Substituted 1,4-Naphthoquinones. Molecules. 2020;25(16). 3577. https://doi.org/10.3390/molecules25163577.
  27. Polonik S., Likhatskaya G., Sabutski Y., Pelageev D., Denisenko V., Pislyagin E. et al. Synthesis, Cytotoxic Activity Evaluation and Quantitative Structure-Activity Analysis of Substituted 5,8-Dihydroxy-1,4-naphthoquinones and Their O- and S-Glycoside Derivatives Tested against Neuro-2a Cancer Cells. Mar. Drugs. 2020;18(12). 602. https://doi.org/10.3390/md18120602.
  28. Menchinskaya E., Chingizova E., Pislyagin E., Likhatskaya G., Sabutski Y., Pelageev D. et al. Neuroprotective effect of 1,4-naphthoquinones in an in vitro model of paraquat and 6-OHDA-induced neurotoxicity. Int. J. Mol. Sci. 2021;22(18). 9933. https://doi.org/10.3390/ijms22189933.
  29. Agafonova I., Chingizova E., Chaikina E., Menchinskaya E., Kozlovskiy S., Likhatskaya G. et al. Protection Activity of 1,4-Naphthoquinones in Rotenone-Induced Models of Neurotoxicity. Mar. Drugs. 2024;22(2):62. https://doi.org/10.3390/md22020062.
  30. Pislyagin E. A., Aminin D. L. Purinergic P2X receptors as new molecular targets for the search and creation of new drugs. In: Research of natural compounds at the Pacific Institute of Bioorganic Chemistry named after. G. B. Elyakov. New approaches and results. Vladivostok; 2016. P. 45–51. (In Russ.).
  31. Pislyagin E., Kozlovskiy S., Menchinskaya E., Chingizova E., Likhatskaya G., Gorpenchenko T. et al. Synthetic 1,4-Naphthoquinones inhibit P2X7 receptors in murine neuroblastoma cells. Bioorg. Med. Chem. 2021;31. 115975. https://doi.org/10.1016/j.bmc.2020.115975.
  32. Kozlovskiy S., Pislyagin E., Menchinskaya E., Chingizova E., Likhatskaya G., Sabutski Y., Polonik S., Aminin D. Anti-Inflammatory Activity of 1,4-Naphthoquinones Blocking P2X7 Purinergic Receptors in RAW 264.7 Macrophage Cells. Toxins. 2023;15(1):47. https:// doi.org/10.3390/toxins15010047.
  33. Kozlovskiy S., Pislyagin E., Menchinskaya E., Chingizova E., Kaluzhskiy L., Ivanov A. et al. Tetracyclic 1,4-naphthoquinone thioglucoside conjugate U-556 blocks the purinergic P2X7 receptor in macrophages and exhibits anti-inflammatory activity in vivo. Int. J. Mol. Sci. 2023;24(15). 12370. https://doi.org/10.3390/ijms241512370.
  34. Kozlovskiy S., Pislyagin E., Menchinskaya E., Chingizova E., Sabutski Y., Polonik S. et al. Antinociceptive effect and anti-inflammatory activity of 1,4-naphthoquinones in mice. Explor. Neurosci. 2024;3(1):39–50. https://doi.org/10.37349/en.2024.00035.
  35. Menchinskaya E. S., Pislyagin E. A., Kovalchyk S. N., Davydova V. N., Silchenko A. S., Avilov S. A. et al. Antitumor activity of cucumarioside A2-2. Chemotherapy. 2013;59(3):181–191. https://doi.org/10.1159/000354156.
  36. Menchinskaya E. S., Aminin D. L., Avilov S. A., Silchenko A. S., Andryjashchenko P. V., Kalinin V. I. et al. Inhibition of tumor cells multidrug resistance by cucumarioside A2-2, frondoside A and their complexes with cholesterol. Nat. Prod. Comm. 2013;8(10):1377–1380. https://doi.org/10.1177/1934578X1300801009.
  37. Menchinskaya E., Gorpenchenko T., Silchenko A., Avilov S., Aminin D. Modulation of doxorubicin intracellular accumulation and anticancer activity by triterpene glycoside cucumarioside A2-2. Mar. Drugs. 2019;17(11). 597. https://doi.org/10.3390/md17110597.
  38. Menchinskaya E. S., Dyshlovoy S. A., Venz S., Jacobsen C., Hauschild J., Rohlfing T. et al. Anticancer Activity of the Marine Triterpene Glycoside Cucumarioside A2-2 in Human Prostate Cancer Cells. Mar. Drugs. 2024;22(1):20.
  39. Silchenko A. S., Kalinovsky A. I., Avilov S. A., Popov R. S., Dmitrenok P. S., Chingizova E. A. et al. Djakonoviosides A, A1, A2, B1–B4 — Triterpene Monosulfated Tetra- and Pentaosides from the Sea Cucumber Cucumaria djakonovi: The First Finding of a Hemiketal Fragment in the Aglycones; Activity against Human Breast Cancer Cell Lines. Int. J. Mol. Sci. 2023;24(13). 11128. https://doi.org/10.3390%2Fijms241311128.
  40. Silchenko A. S., Kalinovsky A. I., Avilov S. A., Popov R. S., Chingizova E. A., Menchinskaya E. S. et al. Sulfated Triterpene Glycosides from the Far Eastern Sea Cucumber Cucumaria djakonovi: Djakonoviosides C1, D1, E1, and F1; Cytotoxicity against Human Breast Cancer Cell Lines; Quantitative Structure-Activity Relationships. Mar. Drugs. 2023;21(12). 602. https://doi.org/10.3390/md21120602.
  41. Aminin D. L. Immunomodulatory properties of sea cucumber triterpene glycosides Marine and Freshwater Toxins. 2016;1:381–401. https://doi.org/10.1007/978-94-007-6419-4_3.
  42. Aminin D., Pislyagin E., Astashev M., Es’kov A., Kozhemyako V., Avilov S. et al. Glycosides from edible sea cucumbers stimulate macrophages via purinergic receptors. Sci. Rep. 2016;6. 39683. https://doi.org/10.1038/srep39683.
  43. Pislyagin E. A., Dmitrenok P. S., Gorpenchenko T. Y., Avilov S. A., Silchenko A. S., Aminin D. L. Determination of cucumarioside A₂-2 in mouse spleen by radiospectroscopy, MALDI-MS and MALDI-IMS. Eur. J. Pharm. Sci. 2013;49(4):461–467.
  44. Pislyagin E. A., Manzhulo I. V., Dmitrenok P. S., Aminin D. L. Cucumarioside A2-2 causes changes in the morphology and proliferative activity in mouse spleen. Acta Histochemica. 2016;118(4):387–392. http://dx.doi.org/10.1016/j.acthis.2016.03.009.
  45. Pislyagin E. A., Manzhulo I. V., Gorpenchenko T. Y., Dmitrenok P. S., Avilov S. A., Silchenko A. S. et al. Cucumarioside A2-2 Causes Macrophage Activation in Mouse Spleen. Mar. Drugs. 2017;15(11). 341. https://doi.org/10.3390%2Fmd15110341.
  46. Aminin D., Wang Y. M. Macrophages as a «weapon» in anticancer cellular immunotherapy. Kaohsiung J. Med. Sci. 2021;37(9):749–758. https://doi.org/10.1002/ kjm2.12405.
  47. Chuang W. H., Pislyagin E., Lin L. Y., Menchinskaya E., Chernikov O., Kozhemyako V. et al. Holothurian triterpene glycoside cucumarioside A2-2 induces macrophages activation and polarization in cancer immunotherapy. Cancer Cell Int. 2023;23(1):292. https://doi.org/10.1186/s12935-023-03141-z.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The rutin content in F. esculentum plants of the Izumrud variety and the Izumrud × Inzer hybrid regenerated in test tubes, obtained after exposure to nutrient media with zinc and grown in vitro during the III–V passages. The inset shows the chemical structure of the routine

Download (142KB)
3. Fig. 2. Visual assessment of the signal intensity on the diffusion image of the axial section of the rat brain obtained by MRI; in the areas highlighted in yellow-red, the diffusion rate is higher compared to the areas represented in blue (a). Quantitative determination of the diffusion rate of water, performed by measuring the diffusion coefficient; reduction diffusion is indicated on the graph by a pink line indicated by arrow (b)

Download (215KB)
4. Fig. 3. Scheme of action of antibiotics, the target of which is sortase A. The enzyme sortase A is one of the key factors in the formation of biofilms by Gram–positive bacteria Staphylococcus aureus (1), which, when skin cells are infected, leads to inhibition of their proliferation (2) and migration (3). Inhibition of sortase A activity (4) ensures the restoration of the level of keratinocyte proliferation (5) and migration (6)

Download (443KB)
5. 4. QSAR analysis of the chemical structure–neuroprotective activity relationship. Predicted neuroprotective activity (in%) of 1,4-NQs, depending on experimental values for the Neuro-2a cell line in the presence of PQ(a) or 6-OHDA (b). An electrostatic map predicting preferred locations for hydrophobic sites (green), hydrogen bond acceptors (blue), hydrogen bond donors (red) for inactive U-193 (c) and highly active neuroprotector U-623 (d)

Download (261KB)
6. 5. Scheme of action of 1,4-NQs derivatives U-443 and U-573, which protect neuronal cells Neuro-2a and macrophage cells RAW 264.7 from the neurotoxic effects of rotenone, have an anti-inflammatory effect and restore cognitive behavior in animals with induced early stage PD

Download (343KB)
7. 6. 1,4-NQs modulate the functioning of P2X7 receptors. (a) is a scheme for the synthesis of 1,4-naphthoquinonthioglucosides. (b) – the effect of pre-incubation with 1,4-NQs (0.1, 1.0 and 5.0 microns), BBG (brilliant blue G, 10 microns) and PPADS (pyridoxalphosphate-6-azophenyl-2’,4’-disulfonic acid, 50 microns) on the entry of Ca2+ ions caused by ATP (2 mM) in mouse neuroblastoma cells Neuro-2a. (c) – the effect of pre-incubation of cells with 1,4-NQs (0.1, 1.0, and 10.0 µm) on EtBr uptake. (d) – molecular modeling; homological model of the trimeric structure of the mouse P2X7 receptor (mP2X7R, UniProt ID Q9Z1M0) in closed form with 1,4-NQs. (e) – image of mouse neuroblastoma cells Neuro-2a

Download (492KB)
8. Fig. 7. Images of two-dimensional gel electrophoresis of PC-3 cell proteins in control (a) and after incubation for 48 hours with CA2-2 (b). Enlarged images of spots on the gel corresponding to regulated target proteins under the action of CA2-2; the "+" sign indicates spots, corresponding to proteins whose expression changed under the action of CA2-2, the "—" sign indicates the target proteins of control cells (b). Venn diagram of the effect of CA2–2 on protein expression in human prostate tumor cells of the PC-3 line. The numbers show the number of detected proteins; The arrows indicate the directions of regulation of expression (g)

Download (241KB)
9. 8. The strategy of cellular anti-cancer immunotherapy. Mouse macrophages were activated with triterpene glycoside CA2-2 and polarized into the antitumor M1 phenotype ex vivo. Macrophages were then loaded with nanoparticles conjugated with a CyTE777 near-infrared fluorescent probe. Activated and polarized fluorescent M1 macrophages were injected into mice with tumors for visualization and localization of macrophages, as well as for antitumor cell immunotherapy

Download (342KB)

Copyright (c) 2024 Russian Academy of Sciences